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Abstract 
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The DENDRAL Project was one of the first large-scale programs to embody the strategy of 
using detailed, task-specific knowledge about a problem domain as a source of heuristics, 
and to seek generality through automating the acquisition of such knowledge. This paper 
summarizes the major conceptual contributions and accomplishments of that project. It is an 
attempt to distill from this research the lessons that are of importance to artificial 
intelligence research and to provide a record of the final status of two decades of work. 
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1. Introduction 

Within computer science the DENDRAL Project is noteworthy in several 
ways. It was the first major application of heuristic programming to experimen- 
tal analysis in an empirical science, a practical problem of some importance. It 
was one of the first large-scale programs to embody the strategy of using 
detailed, task-specific knowledge about the problem domain as a source of 
heuristics, and to seek generality through automating the acquisition of such 
knowledge. It has achieved a high level of performance, because it used a 
substantial amount of knowledge of chemistry. The DENDRAL programs 
were knowledge-driven, in the sense of today’s expert systems, with the 
knowledge principle--that knowledge is power-first articulated in the context 
of DENDRAL [16]. They were the first to use the concept of a separate 
knowledge base that could be edited or redefined for new problems while 
retaining all the same code for interpreting and using that knowledge. DEN- 
DRAL was the first rule-based system applied to a “real-world” problem. It 
has been used by chemists, other than its developers, in the pursuit of their 
own research goals. It was an interdisciplinary project that was continuously 
productive for over a decade. It was one of the larger, more sustained AI 
projects undertaken, giving it a certain prominence even apart from its 
successes. Perhaps most significant is that this research was an extensive 
empirical exploration of heuristic programming techniques; as such it was a 
validation of the strengths and weaknesses of these techniques and an instantia- 
tion of a philosophical concept of automatic discovery procedures whose status 
had long been in dispute. 

The knowledge principle, as stated in [32] is: 

A system exhibits intelligent understanding and action at a high 
level of competence primarily because of the specific knowledge 
that it can bring to bear: the concepts, facts, representations, 
methods, models, metaphors, and heuristics about its domain of 
endeavor. (p. 1173). 

This principle is now widely accepted, but at the time of the early development 
of DENDRAL it stood in sharp contrast to the prevailing view that ascribed 
intelligence primarily to reasoning power. The knowledge principle, in con- 
trast, asserts that specific knowledge is the major source of machine and human 
intelligence, and will suffice with even a simple inference method. Empirical 
support for this principle is now abundant, and DENDRAL’s performance is a 
major underpinning of this empirical evidence. 
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Whether DENDRAL was the first expert system is debatable; it was 
certainly the first application of AI to a problem of scientific reasoning. In his 
forward to [7], Allen Newell identifies MYCIN as “the granddaddy of expert 
systems”, but acknowledges that those associated with both projects may not 
concur. 

Issues of precedence aside, DENDRAL introduced several novel concepts of 
program organization that have found substantial application. The point of this 
case study is to illuminate the AI aspects of DENDRAL and to provide the 
basis for future studies of intelligent systems. 

“DENDRAL” is the name of the project and also the name of the 
programs, sometimes further distinguished as Heuristic DENDRAL and Metu- 
DENDRAL. DENDRAL originally stood for DENDRitic ALgorithm, a 
procedure for exhaustively and non-redundantly enumerating all the topo- 
logically distinct arrangements of any given set of atoms, consistent with the 
rules of chemical valence. The original algorithm, which generated only 
ring-free (acyclic) structures (i.e., the aliphatic compounds) was devised by one 
of the authors (Lederberg [29-311). The Dendritic Algorithm (as well as its 
later version, which in addition encompasses ring structures) is the heart of the 
DENDRAL programs. This algorithm defines the set of possible solutions 
through which the DENDRAL programs search for likely solutions. A basic 
feature of DENDRAL, and an important limitation on the range of applicabili- 
ty of its methods, is its uniform notation for hypotheses, here taking the form of 
graphs in the abstract sense of points (nodes) linked by lines (edges), depicting, 
respectively, the atoms and bonds of molecules. 

The means by which the programs reduce the set of possible chemical graphs 
is the real story of DENDRAL. As Newell put it: 

DENDRAL has strong links to classical problem-solving programs, 
with a heuristically shaped combinatorial search in a space of all 
isomers at its heart and a representation (the chemical valence 
model) that provided the clean space within which to search. [7, 
page xiii] 

The heuristics employed are based on judgment and specific chemical 
knowledge, the kinds of expertise that are popularly called experience and 
intuition. Heuristic DENDRAL comprises the programs that employ these 
methods. An important point, one on which the success of the project turned, 
was that the constructors of the DENDRAL programs eschewed the search for 
general principles of problem solving or learning in favor of specific knowledge 
of a special problem. The success of this project against the general back- 
ground of failure, at that time, of the search for general systems does not, of 
course, decide the issue of better approach; but it attracted attention. The 
DENDRAL Project spanned approximately the second and third decades of 
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artificial intelligence research. This period was one of great change in computer 
technology and in the attitudes, aspirations, and activities of the research 
community working on problems of artificial intelligence. 

The major goal of AI research is a productive understanding of the processes 
of intelligent thought. In its first decade (approximately 1954-1964), AI was 
characterized by enthusiasm and optimistic forecasts of the imminent solution 
of many problems of psychology, linguistics, mathematics, philosophy, technol- 
ogy, and management. By the end of the decade, when DENDRAL was in its 
initial stages, these optimistic forecasts were being reevaluated. The now 
classic example of unfulfilled forecast is mechanical translation of natural 
languages. This and most other problems outside previously formalized do- 
mains have proved far more difficult than many AI pioneers imagined. 

In the mid 1960s AI was in a transition stage [19]. On the one hand, the 
newly discovered difficulty of the adopted problems was tempering optimism 
and in some quarters producing pessimists. Long-standing critics of determin- 
ism in general, and technology in particular, were coming out of the closet. On 
the other hand, some work on general problem-solving procedures still held 
promise in the view of many researchers. The General Problem Solver (GPS) 
[15] had yet to have its limitations established. A bright light was the resolution 
procedure [46] for proving theorems in the predicate calculus: a complete, 
uniform proof procedure for a general calculus seemed promising indeed. 
Ironically, the search for general problem-solving methods was being pursued 
on a broad front at the same time that specific solutions to special problems 
were failing to produce results. 

A second aspect of this transition stage was the astoundingly rapid develop- 
ment of computer technology. Solid-state, second-generation hardware was 
replacing the slower, less reliable equipment. Telecommunications technology 
was being interfaced with computers on a large scale. Time sharing of 
computers had been conceived and was to become a reality in the 1960s. 
Software in general and executive systems in particular were reaching new 
levels of sophistication. List-processing and string-processing languages were 
becoming readily available. These developments combined, in the early 197Os, 
into facilities that eclipsed in power those available ten years earlier. Today’s 
student using a high-level language on a workstation is interminably amused by 
tales of the days when a programmer would carry a box of punched cards to a 
computing center and return some days later only to find that a bug in the 
compiler, a mis-punched control card, or an operator error had terminated the 
job. The first large implementation of DENDRAL was done over long- 
distance telephone lines linking a model-33 teletype in Palo Alto with the Q32 
computer at System Development Corporation in Santa Monica, with tele- 
phone bills of $2000 per month being common. When the DEC PDP-6 
computer arrived at the Stanford AI Lab, the program was transferred there, 
running in 16K words when loaded with LISP 1.5. Although none of today’s 
wealth of computer sophistication would have struck the early workers as 
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science fiction beyond their dreams, the additional load imposed by the 
bothersome conditions of the time were enough to swamp many well-conceived 
projects of realistic scope. 

It was in this milieu that DENDRAL began. An important fact about 
DENDRAL-though not unique to it-is that it undertook a relatively narrow 
and well-defined problem for which there was a clear measure of success. The 
major lesson DENDRAL has for artificial intelligence, and for those dis- 
ciplines interested in the application of AI techniques, is that it is possible to 
select problems of modest complexity that nonetheless baffle the novice, and to 
reduce these problems to some order, resulting in a problem-solving system 
that lends needed assistance to human intelligence. By lowering one’s sights 
from solving broad, general problems to solving a particular problem, by 
applying as much specific knowledge to that problem as can be garnered from 
human experts, and by systematizing and automating the application of this 
knowledge, a useful system can be produced. This lesson underlies the success 
of today’s expert systems. 

In this paper we have a dilemma of needing to use chemical concepts to 
explain what the program does, what it knows, and therefore how it works. We 
have attempted to define many of the concepts, with apologies to those who 
are already familiar with them, but we have not attempted sufficiently detailed 
definitions to satisfy a professional chemist’s need for details. 

The fundamental problem of analytic chemistry is to determine the chemical 
structure of molecules. This is described in the next section. A molecule is 
composed of many atoms (mostly, in organic chemistry, carbon, hydrogen, 
oxygen, phosphorous, and sulfur) arranged and held in a stable three-dimen- 
sional structure by electron sharing and other energies or forces among the 
atoms. The electron sharing that binds one atom to another is called a chemical 
bond. Often the three-dimensional arrangement is suppressed in favor of 
representing only a two-dimensional schematic drawing of the atoms and their 
chemical bonds, a representation known as the topology of the molecule. It is 
conventionally shown as a labeled graph with non-directed arcs between nodes 
that are labeled as chemical atoms. The geometry of the molecular arrange- 
ment refers to the representation of bond angles and bond lengths that position 
the atoms in space. A collection of chemical atoms of known types and 
numbers is called an empirical formula, and is usually written with numeric 
subscripts on the atom names to indicate the number of atoms of each type, 
e.g., C,H,,02. Any two different molecular structures with exactly the same 
empirical formula are called isomers. They are called stereoisomers if they have 
the same topology and differ only in their geometry, for example, structures 
that are identical except with one group of atoms positioned above or below a 
plane defined by the rest of the molecule. The four valence bonds of the 
carbon atoms are topologically equivalent, but with different labels can be 
disposed in two geometries, usually called dextro and fevo, which are mirror 
images of one another. 
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2. The structure elucidation problem of organic chemistry 

The general problem to which the DENDRAL programs apply is an 
important, substantive problem in organic chemistry: structure elucidation, 
that is, the determination of the organization of the chemical atoms in specific 
molecules. The problem is important because the chemical and physical 
properties of compounds are determined not just by the heap of their 
constituent atoms, but by the topological and geometric arrangement of these 
atoms as well. Several empirical means are available for obtaining information 
about the structure of a compound. Prominent among these is mass spec- 
trometry, and DENDRAL originally addressed problems associated only with 
this method, although it evolved to deal with the problems of structure 
elucidation on more general terms. The earliest versions of DENDRAL were 
mostly concerned with topology, or connectivity information about molecules, 
because the context of its development was mass spectrometry, which is largely 
insensitive to geometry, or stereoisomerism. Thus to DENDRAL, different 
geometric forms of the same topology were entirely equivalent. Later versions 
added specialized postprocessing knowledge and procedures to deal with 
three-dimensional geometry, chemical reactivity, and data beyond mass spec- 
tra. The core structure of DENDRAL remained the same. 

The identification of a molecule means at least that its topological organiza- 
tion is known; it is usually represented as a graph with atoms as nodes and 
bonds as edges. Initially DENDRAL was applied to aliphatic compounds only 
since an enumeration algorithm for cyclic compounds had not yet been 
programmed. The compounds studied were, in roughly chronological order, 
amino acids, ketones, ethers, alcohols, amines, thiols, and thioethers. Later 
versions of DENDRAL, incorporating the cyclic structure generator, have 
been applied primarily to steroids, in particular estrogens, marine sterols, and 
related compounds. 

The DENDRAL programs are not limited in application to these classes of 
compounds, but are general mechanisms that could be applied to any com- 
pounds for which certain types of information are available. A practical limit 
on size of molecules amenable to the DENDRAL and conventional mass 
spectrometry analysis methods is, roughly, 100 atoms. Recently mass spec- 
trometry has been successfully applied to the measurement of mass numbers of 
proteins with thousands of atoms [l]. If mass spectral analysis of fragments of 
proteins had been available, DENDRAL might have been applied to that 
analysis (and undoubtedly will be in the future), using superatoms (see below, 
Section 3.2.1) to represent individual amino acids of twenty types arranged in 
linear sequences, or to represent DNA sequences. As it was, the applications 
were selected in part for their value in developing the DENDRAL concepts 
and in part because they were of interest for their importance to contemporary 
chemistry. 
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The choice of structure elucidation as the target problem in the initial 
development of the DENDRAL system is an early illustration of the first phase 
of the development cycle of expert systems [21, Chapter 51. Around 1963 
Feigenbaum became interested in studying information-processing models of 
human empirical induction as an alternative to the puzzle-solving and game- 
playing task environments of Newell and Simon. In the summer of 1964 he 
worked with Buchanan on a simple concept formation program that induced a 
general concept definition from examples. In 1965 he mentioned to Lederberg 
that he was looking for a suitable problem in science in which to study 
induction of scientific hypotheses and Lederberg suggested the task of chemical 
structure elucidation using empirical data from mass spectrometry. There were 
numerous reasons why this was a good choice from a scientific point of view, 
including the technical merits of LISP for representing and manipulating the 
tree structure representation of chemical graphs. The non-AI motivation, and 
importance of the overall problem to an outside “client”, came from Leder- 
berg’s involvement in NASA’s Mariner mission and its on-board experiments 
to look for evidence of life on Mars. A mass spectrometer was part of the 
on-board instrumentation and Lederberg wanted means of identifying 
chemical compounds on Mars that were not also found and catalogued 
in Earth-based libraries. (It would have been desirable to do the analysis 
itself on Mars to avoid the long delays in sending and receiving radio 
signals. However the tempo of space technology outpaced that of computer 
engines. The design of Viking 1975, the first Mars mission, was frozen by 
1970, before there were space-qualified computers powerful enough to run 
DENDRAL.) 

A first prototype of the solution generator was programmed (by William C. 
White) in 1965, and by the end of that year a definition of the project was well 
in hand and a set of open problems was published [17]. Georgia Sutherland 
and Buchanan were recruited in 1966 and by 1968 the basic design principles of 
expert systems were instantiated. 

Lederberg consciously invoked a recognized authority in mass spectrometry 
only after using his own knowledge sufficiently to demonstrate the program’s 
potential to an outsider. In a well-orchestrated demonstration to Professor Carl 
Djerassi, an internationally known expert at Stanford, Djerassi saw how stupid 
the program was-but he saw a running program. The immediate question, 
which has become a cornerstone of knowledge engineering, was “What 
do you know about this problem that the program does not know?” Then 
Djerassi assigned additional experts from his laboratory, Dr. Alan Duffield 
in particular, to work with Buchanan almost daily in the transfer of 
expertise that has come to be known as knowledge engineering. One of 
the first descriptions of the knowledge engineering process, with a recon- 
structed transcript of part of a knowledge engineering session, was published 
in 1970 [9]. 
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2.1. Mass spectrometry 

Only recently, with the development of scanning tunneling microscopy, have 
atoms become examinable by optical means. To determine the structure of a 
molecule of any complexity, chemists normally resort to indirect methods. One 
of the most fruitful of these is mass spectrometry. The foundations of mass 
spectrometry were laid around the turn of the century by Wilhelm Wien and 
J.J. Thomson. By 1935, the main features of modern instruments had been 
developed by A.J. Dempster and others. An explosion of interest in mass 
spectrometry occurred in the 1960s as it became a laboratory tool of value to 
analytical chemists [40]. Carl Djerassi, for example, had co-authored one of 
the early, influential books [ll]. 

The essence of the technique is to decompose large molecules into frag- 
ments, infer the composition of these overlapping fragments, and use this 
information to guess the structure of a molecule that would break to yield the 
same observed set of fragments. A molecule bombarded with electrons in the 
mass spectrometer does not always end up in just two fragments; some 
fragments decompose further. Target molecules in a sample do not all frag- 
ment in the same places. Thus the data reflect a statistical distribution of 
fragments, with relative frequencies determined by the relative extent to which 
some bonds are more frangible than others. For example, single bonds 
generally break more readily than double bonds. Also, certain groups are 
relatively immune from breaking in the mass spectrometer. For example, 
C=O will generally break off as a unit or remain as a constituent of a larger 
unit, but will seldom itself break. 

Many of the fragments are electrically charged (that is, they are ions, 
normally singly charged), that can be accelerated by an electric field. Frag- 
ments of lesser mass reach higher velocities than those of greater mass (and 
equal charge).’ The beam of ions thus produced passes into a magnetic field 
perpendicular to its path and is deflected, in accordance with the laws of 
electromagnetism and mechanics, with higher velocity (lower mass) fragments 
being deflected by greater amounts. The result is a sorting of fragments by 
mass (actually by mass to charge ratio). The early instruments were of low 
resolving power (thus the name low-resolution mass spectrometry). that is, 
they resolved masses of chemical compounds and fragments only to the nearest 
integral mass unit. High-resolution mass spectra, which allowed precise identi- 
fication of the numbers of atoms of each type in a compound fragment. became 
available routinely after DENDRAL was begun and were incorporated into it. 
This also allowed more precise heuristics but did not alter the structure of the 
program. 

’ Positively charged ions are usually examined, but negative ions can be studied in specially 
designed instruments. 
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2.2. Other analytical methods 

A chemist can (and usually does) gather other kinds of information about an 
unknown compound. At the very least there will be some information about its 
source and extraction methods, which often suggests probable constituents. 
Laboratory analyses may also provide further clues of this sort. In addition 
other instrument-based techniques provide information about the compound. 
The most common among these are gas chromatography, infrared spec- 
trometry, ultraviolet spectrometry, and nuclear magnetic resonance spectrometry 
(NMR). Information from these and other techniques was incorporated in 
DENDRAL in three ways. First, constraints inferred manually from these data 
were added for each problem to the constraints used by the generator. Second, 
knowledge and programs were added to infer many of these constraints 
automatically. Third, knowledge and programs were added for postprocessing 
to predict experimental data that could discriminate among candidate struc- 
tures. 

3. The solution method 

DENDRAL is not a single program but a set of programs. Some of these 
programs may be used alone to perform single subtasks of importance to the 
problem of chemical structure elucidation. Some may be linked in various ways 
by different executive programs to form coherent systems for larger tasks. To 
organize the description of this collection of intertwined programs we first note 
that they comprise basically two systems. The first, called Heuristic DEN- 
DRAL, is a system that incorporates specific knowledge of chemistry and mass 
spectrometry, accepts a mass spectrum and other experimental data from an 
unknown compound as input, and produces an ordered set of chemical 
structure descriptions hypothesized to explain the data. The second system, 
called Meta-DENDRAL, accepts known mass spectrum/structure pairs as 
input and attempts to infer the specific knowledge of mass spectrometry that 
can be used by Heuristic DENDRAL to explain new spectra. Heuristic 
DENDRAL is a performance system and Meta-DENDRAL is a learning 
system. Our emphasis in this paper is on the former. For information on 
Meta-DENDRAL, see [5,6]. 

It must be kept in mind that the descriptions here are somewhat idealized 
expositions of the programs. Early versions, described in other publications, 
were used to produce many of the results summarized later. No single version 
has been systematically applied to all the specific structure elucidation prob- 
lems investigated by the project. 
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3.1. The plan-generate-test organization of DENDRAL 

The basic method of Heuristic DENDRAL is an important extension of the 
generate-and-test paradigm in which a generator enumerates potential solu- 
tions, which are expressed as chemical graphs in the case of DENDRAL. It is 
often desirable, though not essential to the paradigm, for the generator to be 
non-redundant as well as exhaustive: that it guarantee every possible solution 
be enumerated exactly once. A non-exhaustive generator would be unconvinc- 
ing; a redundant one would be inefficient or non-terminating. DENDRAL’s 
way of limiting generation is with a planning program that can suggest 
constraints on generation. This component distinguishes plan-generate-test 
from generate-and-test. Constraints may take the form of guidance about parts 
of the solution space to ignore or parts to focus on, or both. 

The DENDRAL planner is itself an hypothesis formation program that 
employs task-specific knowledge to find constraints for the generator. It is 
important that the planner be extremely flexible in the sense of permitting the 
ready addition of new knowledge. Ideally, the knowledge will be highly 
modular so that it is possible to add new knowledge without reevaluating the 
old. Further selection is performed by the third and final stage, a testing 
program called the PREDICTOR. This is a program that examines each 
proposed solution and rejects those that fail to meet certain criteria. The 
PREDICTOR incorporates a theory of mass spectrometry that predicts what 
fragmentations a proposed chemical structure will undergo in a mass spec- 
trometer and constructs a mass spectrum accordingly. This predicted spectrum 
may then be compared to the one produced in the laboratory. 

Both planning and testing programs constrain the set of likely solutions with 
respect to analytic data available (e.g., a mass spectrum) and knowledge about 
the data source (e.g., partial theory of mass spectrometry). It might be thought 
that it is much more economical to apply constraints first, in the planning stage, 
rather than last, in the testing stage. In some measure this is true, and every 
effort is made to pre-constrain the generator. However, pre-constraint is not 
always possible, in this case because the theory generally requires a completed 
structure, and not a partially generated one, to make a strong enough 
statement to allow pruning. 

The feature that gives the plan-generate-test paradigm its cohesiveness is 
the uniform representation used by the three components. In the case of 
DENDRAL this representation is chemical graphs. The planner devises hy- 
potheses that reject and/or propose certain classes of chemical graphs, the 
generator generates chemical graphs, and the tester represents fragmentation 
processes in terms of chemical graphs. This common representation is the glue 
holding DENDRAL together. 

Table 1 introduces the names of some of the component programs and data 
structures of the DENDRAL system and outlines their interrelationships. 
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Table 1 
Organization of the heuristic DENDRAL programs 

Operation Components Input 

Planning MOLION Mass spectrum 

Planning rule Planning rules 

output 

Molecular ion 
constraints 

Constraints 
generator 

PLANNER 

Generating 

Testing 

Acyclic generator 
CONGEN 
GENOA 
STEREO 
PREDICTOR 

MSPRUNE 

REACT 

Planning rules 

Constraints 

Superatoms 
GOODLIST 
BADLIST 
Candidate molecular 

structures 

Candidate molecular 
structures 

Mass spectrometry 
rules 

Reaction chemistry 
rules 

Most plausible 
structures 

Structures consistent 
with spectrum 

Structures consistent 
with known 
reactions 

3.2. The DENDRAL generator 

The seminal insight for DENDRAL was the original algorithm for exhaus- 
tively and non-redundantly generating acyclic structures as reported in (29-311. 
This algorithm, embodied in computer code, was the basis of the first 
DENDRAL system. When the limitation to acyclic structures was overcome 
[2, 31, DENDRAL increased its scope dramatically. 

The cyclic generator includes the acyclic generator as a component. The 
complete algorithm is complex, but its correctness has been rigorously proved 
[2]. Because the graph generation algorithms were proven to be correct in 
theory, DENDRAL’s procedures may be directly applicable to other knowl- 
edge-based systems in which hypotheses may be represented as labeled graphs. 

The program’s ability to generate hypotheses exhaustively and without 
redundancy is the key to assuring scientist-users that every plausible hypothesis 
appears in the output. Implausible hypotheses are pruned from a search space 
that is guaranteed to be complete for reasons explicitly stated in the con- 
straints-and only for those reasons. This is known as the exclusion paradigm 
in AI and has guided the construction of other knowledge-based systems in 
science [23]. In philosophy at least since the 17th century this has been called 
induction by enumeration. 

In spite of the fact that there is no way of proving that a program is a correct 
embodiment of a complex algorithm, the generator program has passed the 
important test of enumerating the correct number of structures for many cases 
where the number of structural isomers was computed independently, and has 
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been extensively checked against hand-calculated examples. We do not serious- 
ly doubt the program’s correctness. 

3.2.1. The generator 
The generator of molecular structure descriptions is itself algorithmic. It is 

based on Lederberg’s notational algorithm, which assigns a unique name to 
every topologically distinct structure. Considerable design and implementation 
effort was needed to transform the notational algorithm into an efficient 
generating algorithm. In the case of molecular graphs without rings, the acyclic 
structures, the transformation was straightforward, and the main effort was in 
making the implementation flexible enough to be guided by user-defined lists 
of substructures to avoid or to include (BADLIST and GOODLIST). 

For structures with rings, however, the notational algorithm was not easily 
transformed into a generating algorithm. It was important, and difficult to 
prove, that the generation was complete, i.e., that every distinct structure with 
a given number of nodes of given types was generated. The particularly 
difficult issue, besides efficiency, however, was avoiding generation of dupli- 
cate structures. Because of the many-fold symmetries of some structures, it was 
extremely difficult to guarantee that no single structure was duplicated. The 
generator that was finally designed and implemented was proved to be both 
complete and non-redundant. It was later rewritten for greater efficiency. 
Although tuned to generate graphical descriptions of chemical structures, this 
generator can be used for any problem in which solutions can be described 
graphically. (We are not aware of any actual uses outside of chemistry, 
however. Computer programs and LSI circuit design might be promising.) As 
with generation of acyclic graphs, flexibility is a primary concern since the 
generator must allow guidance with respect to a variety of forms of information 
that may be available about plausible and implausible parts of the solution 
space. The algorithm is described more fully in [4, 9, 121. 

A self-contained system called CONGEN embodies the cyclic structure 
generator. Aside from its importance as a powerful system in its own right, 
CONGEN illustrates the basic concepts of CONstrained GENeration that 
underlie the entire DENDRAL effort and the plan-generate-test paradigm. 

We will now describe CONGEN because it demonstrates in clear fashion the 
concept of heuristic search in the space of possible chemical structures. 
CONGEN permits the user to constrain the enumeration by specifying several 
types of constraints. These are: 

(1) substructures that must be present with specific cardinality; 
(2) sizes of rings that must be present; 
(3) the number of hydrogen atoms that must be associated with a given 

structure, without being specific as to where they are bonded; 
(4) the number of isoprene units that must be part of the generated 
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structures. (An isoprene unit is a Y-shaped grouping of five carbon 
atoms; they are particularly abundant in natural products.) 

The first step in using CONGEN is to define superatoms. A superatom may 
be any connected graph that is treated as a unit, acting in the role of an atom in 
the construction of larger structures. 

The GENERATE step produces all possible structures of atoms and 
superatoms following the algorithm of the cyclic generator but rejecting all 
structures violating defined constraints. 

The final step, called IMBED, expands (“explodes”) the superatoms one 
type at a time so that the resulting final structures are representations of 
chemical structures in terms of atoms and bonds only. During imbedding, 
structures are also constrained according to the user’s specifications, since the 
expansion of a superatom could give rise to violations of constraints that were 
not violated by intermediate structures. 

The program is interactive, permitting chemists to revise their list of 
structures and constraints at any stage. Thus if the generation produces an 
inordinate number of possibilities, chemists may add further constraint infor- 
mation until they are able to winnow the set down to manageable size. The 
final enumeration ideally would be a single structure, though in practice this is 
not often the case. However, if the number of structures is sufficiently small to 
permit examination of each member, the chemist’s stock of judgment and 
intuition that remains uncodified may, at times, be sufficient to make a good 
guess as to the correct structure. 

The following is a record of a session with CONGEN. The example is very 
simple and of no particular chemical interest but serves to illustrate the 
program’s syntax and behavior. The constraints listed below illustrate the 
flexibility and power of the program to use information about chemical 
structure that may be inferred (manually or automatically) from a variety of 
analytical techniques. 

The chemical information available is as follows: 

Cl. The empirical formula is C,,H,,O. 
C2. The compound contains a keto group in a five-membered ring. 
C3. There are three protons (H’s) alpha (adjacent) to the carbonyl group. 
C4. There are two vinyl groups (-C&C-) and four vinyl protons. 
C.5. There is no conjugation (alternation of double and single bonds). 
C6. There are no diallylic protons (hydrogens at the middle carbon of a 

diallylic structure: -C==C-C-C=C-), nor protons alpha to both a 
vinyl and the keto group. 

C7. There are only two quaternary carbons, one in the keto group and one 
in one of the vinyl groups. 

C8. There are no additional multiple bonds. 
C9. It is assumed there are no three- or four-membered rings. 
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ClO. There are no methyl groups. 

[Comments are bracketed and refer to problem definition statements Cl-ClO, 
above. The following transcript has been abbreviated. Structure drawings are 
slightly modified from those done by a program authored by Ray Carhart that 
has come to be known as “Carhart’s DRAW Program”. It avoided the need for 
an expensive graphics terminal by producing teletype compatible drawings. 
Today of course much more readable drawings can be made on workstations.] 

WELCOME TO CONGEN, VERSION VI. 
#DEFINE MOLFORM C 12 H 14 0 
MOLECULAR FORMULA DEFINED 

#DEFINE SUBSTRUCTURE Z 

[Z is the structure required by constraints C2 and C3.1 

(NEW SUBSTRUCTURE) 

>RING 5 
<LINK 1 1 1 
>ATNAME 6 0 
>HRANGE 2 1 13 12 

[C3: atom 5 

>DRAW NUMBERED 

[C2: form five-membered ring.] 
[C2: add keto group.] 

412522 
will have 2 H’s, which will be alpha to the carbonyl; 

atom 2 will have the third H alpha to C=O.] 

SUBSTRUCTURE Z (HRANGES NOT INDICATED) 
NON-C ATOMS: 6+ 0 

#DEFINE SUBSTRUCTURE CH3 
(NEW SUBSTRUCTURE) 
> CHAIN 
>HRANGE 13 3 
>DONE 
CH3 DEFINED 

[ClO: CH, is a methyl group.] 

#DEFINE SUBSTRUCTURE V 
(NEW SUBSTRUCTURE) 

RING 2 

[V is the vinyl group: C=C] 

[Comment: Here several other structures are defined. VV is a double vinyl: 
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C&C-C=C. VH is a “tagged” vinyl. VCHV is a diallyl: -C=C-C-C=C-. 
CHO is a quaternary carbon (no hydrogens).] 

#GENERATE 
SUPERATOM: Z 
RANGE OF OCCURRENCES; AT LEAST 1 
SUPERATOM: V 
RANGE OF OCCURRENCES: AT LEAST 2 
SUPERATOM: 
‘COLLAPSED’ FORMULA IS C 3 Z 1 V 2 H 9 
CONSTRAINT; LOOP Z NONE 

[This constraint prevents Z from bonding with itself.] 
CONSTRAINT: SUBSTRUCTURE CH3 NONE [Cl01 
[Comment: Similarly several other constraints are specified here: Exactly zero 
CHO structures (constraint C7), zero VV structures (C5), zero VCHV struc- 
tures (C6), zero three- and four-membered rings (C9), exactly four VH 
structures (C4B), and exactly three double bonds (C8) .] 

18 STRUCTURES WERE GENERATED 

[Comment: The following is one of the 18 structures; as required, it contains 
one Z and two V’s that will be imbedded later. Most of the constraints have 
been employed already, but a few remain for the imbedding steps.] 

#DRAW ATNAMED 1 

#l: 
c-c-v 

I I I 
v-c-z 

#IMBED 

[Comment: Z will now be imbedded first. More superatoms could be imbedded 
now also.] 

SUPERATOM: Z 
NUMBER TO BE IMBEDDED: 1 
SUPERATOM: 
THE ‘EXPANDED’ FORMULA IS 0 1 C 8 V 2 H 14 
CONSTRAINT: SUBSTRUCTURE VCHCO NONE 

[C6B: VCHCO defines protons alpha to 
both V and C=O to be prohibited.] 

CONSTRAINT: RING 3 NONE [C91 
CONSTRAINT: RING 4 NONE ]C91 
CONSTRAINT: 
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[Comment: As CONGEN begins to consider each structure it prints “#” and 
for each new structure produced it prints “.“I 

#..#..#..#.# . . . . # . . . . #..###### . . . . # . . . . #..##.. 

29 STRUCTURES WERE OBTAINED 

#DRAW ATNAMED I 

[Comment: The following is a sample structure in which Z has been imbedded. 
Note that V’s are not yet imbedded.] 

#l: 
0 

C 
/c~~c/v\ 

‘c-\c $ 
\/ 
V 

#IMBED 

[Comment: The V’s will now be imbedded.] 
SUPERATOM: V 
NUMBER TO BE IMBEDDED: 2 
THE ‘EXPANDED’ FORMULA IS 0 1 C 12 H 14 
CONSTRAINT: SUBSTRUCTURE CHO EXACTLY 2 

[C7: we must end up with exactly two quaternary carbons.] 
CONSTRAINT: RING 3 NONE iC91 
CONSTRAINT: RING 4 NONE tc91 
CONSTRAINT: 

#.#.#.#..#..#..#..#..#..#..#..#.#.#.#..#.#,. 

#.#..#.#..#..#...#..#..#.#.#.#.. 

47 STRUCTURES WERE OBTAINED 

#DRAW ATNAMED (5 6) 

[Comment: The following is a selection of final structures 5, 6.1 

#5: 
0 

\ C 
/” 

c-c, 
) I c-c’ 

c-c 
\I Ii 

c-c c 
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#EXIT 
DO YOU WANT TO SAVE YOUR SESSION ON FILE?: YES 
FILE NAME: CONGEN.EXAMPLE 
SAVED ON CONGEN.EXAMPLE 
EXIT 

3.2.2. GENOA 
CONGEN is capable of producing all possible structures consistent with any 

set of constraints that can be formulated in its constraint language. However, 
the entire set of constraints must be given at the outset; CONGEN then will 
produce a set of fully specified final structures (“leaves” of the tree of 
possibilities). The final structures are of course produced sequentially, and 
need not be displayed until the user requests. Because generation is depth-first, 
the user can be informed of the number of structures generated up to the 
present moment. In fact, the initial implementation was breadth-first but the 
program was modified to allow users to examine complete structures before all 
were generated. The program can be interrupted if the size of the set is too 
large, and more constraints can then be added in an attempt to bring the set of 
alternatives down to manageable proportions. At any time, some of the fully 
specified alternatives can be displayed to guide the selection of additional 
constraints, or to make certain that the generation is proceeding along sensible 
paths. However, it is not possible to stop CONGEN and examine the 
nonterminal nodes of the generation tree in an attempt to examine a class of 
solutions. The GENOA program incorporates a generation method that does 
permit the examination of intermediate stages of the generation. This provides 
the user with an important additional control over the solution process. This 
feature is a byproduct of the organization that was selected in order to resolve 
CONGEN’s inability to deal efficiently with redundant and ambiguous sub- 
structures. 

Frequently, the chemist’s data specify that two (or more) substructures must 
be present in the solution, but it is not known whether the two substructures 
may have shared parts. To use CONGEN, the user must be certain that the 
substructures specified as constraints do not overlap. This means that suffi- 
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ciently small substructures be specified so that they share no parts, or each of 
the possible overlaps must be treated as a separate problem. GENOA removes 
this burden from the chemist by considering all possible overlaps and treating 
them as separate cases (GENOA is GENeration with Overlapping Atoms). 

It is also possible that two or more substructures may be plausible alterna- 
tives for a given item of structural information. that is, two separate hypotheses 
could account for the datum. Again, CONGEN requires that in such a 
situation the alternatives be considered as separate problems. GENOA spares 
the user this burden by permitting the specification of a set of substructures as 
alternatives, and considering automatically the multiplicity of cases this gener- 
ates by interaction with other alternative sets and patterns of overlap. This 
organization of the generation process is called constructive substructure 
search. It represents a substantial improvement in design by lessening the 
burden on the user and by providing more, and more timely, feedback of 
progress during the solution of a structure elucidation problem. 

We have been discussing primarily connectivity isomers. As noted earlier, it 
is possible that two molecules with the same atoms and the same connectivity 
are nonetheless not superimposable in three-space, that is, they cannot be 
deformed, rotated, and translated to be congruent. Such non-superimposable 
instances of the same connectivity isomer are called stereoisomers. There are 
two classes of reasons why superimposability may be impossible. The first is 
because of geometric constraints: the configurations are inherently asymmetric 
because of differing configurations of substituents around a center of symme- 
try. The second class is due to physical constraints: the orientations of the 
bonds are fixed by atomic forces that are not overcome at normal tempera- 
tures. These two classes of stereoisomers are called conjigurational and con- 
formational. In part, as with connectivity isomers, they are of interest because 
they may manifest different chemical and physical properties. They are also 
important because many compounds of biological and medical interest have 
stereoisomers, with only one of the isomers occurring naturally. 

3.2.3. Stereoisomer generation 
The DENDRAL system includes programs that non-redundantly generate 

all distinct connectivity, configurational, and conformational isomers. These 
programs operate in three stages in the order given, and each stage may 
employ user-supplied constraints. The connectivity isomers are generated by 
CONGEN (and GENOA), the configurational isomers are generated by 
augmenting the descriptions of the CONGENIGENOA-supplied connectivity 
isomers using the STEREO program [42-441, and the conformational isomers 
are generated by augmenting the configurational isomers supplied by STEREO 
with descriptions supplied by the CNFCAN program [la]. 

After the connectivity isomers have been generated, it is possible to elabo- 
rate some of the three-dimensional properties of those structures or examine 
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the list in various ways. CONGEN has deliberately been kept unencumbered 
by these options so as to preserve its prospective avoidance of symmetric 
(redundant) structures. Additional programs have been written to allow users 
to look at the different relative three-dimensional orientations of any structure 
or set of structures and to prune a set of candidate structures with respect to 
constraints inferred from data about such orientation. This was largely the 
result of creative and highly technical work by Dr. James Nourse. Details are 
beyond the scope of this paper. The problem-solving heuristic at work here, 
though, is well known in AI: break up huge problems into subproblems. 

3.3. Planning 

Constraints to keep the generator from producing all possible structures are 
necessary for all but the simplest problems. We have seen how certain types of 
constraints can be stated in a manner appropriate for the cyclic generator. In 
CONGEN and GENOA these constraints are formulated by the user. An early 
version of the DENDRAL system used a set of planning rules for aliphatic 
compounds elicited from an expert mass spectrometrist [9], with a form of 
interaction that is now known as knowledge engineering. Each rule specified 
features of the spectrum that are associated with a particular structure. The 
planning phase then examined the spectrum for the specific evidence and if it 
was present the associated structure was added as a GOODLIST constraint. 
The declarative representation of BADLIST and GOODLIST in the first 
version of DENDRAL (as global lists of names of chemical substructures) 
facilitated writing the planning programs that added items to those lists. The 
planning rules are found in [a]. 

An extension of this planning method, in which the rules themselves are 
automatically generated by the planning rule generator, is described in [lo]. 
Although we did not make the connection at the time, we were following the 
advice John McCarthy first published in 1958 (see [39]) that we should 
represent knowledge declaratively so that it can be changed easily by humans 
or programs. (Of course, his paper prescribes logic as the declarative 
language-part of the advice that we were deliberately avoiding.) Explicit, 
changeable representations of knowledge are now the cornerstone of expert 
systems. 

The latest DENDRAL PLANNER program further automates some aspects 
of constraint formulation. It embodies a form of mass spectrometry theory that 
the users instantiate to produce a particular theory for the particular class of 
compounds with which they are working. This theory is not a sweeping 
generalization but a collection of specific hypotheses about the likely loci of 
breaks that will occur when a compound in the class is placed in the mass 
spectrometer. 

It is important to note that there is not a one-to-one relationship between a 
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process described in the theory and data points in the mass spectrum. A 
process may occur in several places in a single compound, and a data point in 
the spectrum may be the result of several different processes. This makes the 
data interpretation problem more complex than in many expert systems, for 
example for troubleshooting, where the observations have more significance. 

Input to the planning phase is: (1) the basic skeleton of the compound class, 
i.e., the structure common to all members of the class, (2) definitions of the 
various breaks that might occur, and (3) a mass spectrum (either low or high 
resolution). The program determines the empirical formula (using the MOL- 
ION program, a heuristic program that is usually able to identify the molecular 
ion from mass spectrum data alone) even if the spectrum does not contain a 
peak corresponding to it. It then formulates constraints that specify which sites 
on the skeleton are likely, and which are unlikely, locations for the nonskeletal 
groups of atoms. The substructures that are attached to the skeleton are called 
substituents, since they substitute for the hydrogens that would otherwise be 
there. 

The first version of planning was written for the acyclic generator applied to 
the aliphatic ketones. Planning information for these compounds was obtained 
by careful questioning of mass spectrometrists about ketones in the mass 
spectrometer, that is, about the kinds of fragmentation processes that were 
most likely to occur. As is commonly the case with today’s knowledge 
engineering assignments, this knowledge had never been completely codified 
and thus the effort to specify the information for DENDRAL was valuable to 
chemists as well. It proved successful and provided the first version of the 
system in the full plan-generate-test form where planning was based on 
planning rules that encompassed sophisticated judgmental rules from an ex- 
pert. These rules of data interpretation took the form: 

{data points} + situations in which these data are produced 

In particular: 

Set of m/e peaks-subgraph 

where “Q” is read “implies that the molecular structure graph contains”. Note 
that the rules of data interpretation are the “inverse” of rules that predict or 
simulate the behavior of a device that produces the data in the first place. The 
theory by which mass spectrometers are designed and built, for example, 
allows theoretical calculations of bond dissociations based on bond strengths 
and the energy level of the electron beam. Not only are these calculations 
computationally expensive, they are not invertible. That is, they do not allow 
one to calculate what chemical compound was put into the device, given its 
output. Data interpretation is a common problem posed to developers of 
expert systems for just these reasons. Furthermore, the solution is just the 
same: ask an expert how to interpret the data. 
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For many analytical problems it is known what class of compounds is under 
investigation, particularly when the source of the material is known and the 
empirical formula of the molecular ion has been determined. If chemists have 
experience with this class, they may know enough about the fragmentations 
that are most likely to have occurred to allow them to predict efficiently the 
behavior of an arbitrary compound of that class. This class-specific informa- 
tion--even in its predictive form-can be used to produce constraints that will 
reduce the DENDRAL generator’s output, as was done for a few subclasses of 
steroids [49-511. 

Predictive rules of mass spectrometry were represented in DENDRAL as 
productions of the form 

situation+ action 

or 

chemical subgraph + mass spectroscopy process 

where the actions, or processes, were the fragmentations and rearrangements 
that occurred in the instrument that caused particular charged fragments to be 
produced and subsequently collected and recorded in the mass spectrum. 
Fragmentations or breaks are defined by specifying (1) the bonds that break, 
(2) the charge location, (3) any accompanying transfers of hydrogen atoms into 
or out of the charged fragment, and (4) any accompanying losses of small 
molecules such as water. Breaks are represented schematically as in Fig. 1. 

To convert this knowledge into a form that is useful for interpretation 
requires fixing a substantial part of the situation description, e.g., the steroid 
skeleton. Then the variable parts of the situation (in our case the chemical 
atoms not assigned to the skeleton) can be added hypothetically in plausible 
combinations to the fixed part of the situation. The predictive rules can then be 
applied to a situation that is fully enough described to allow some rule(s) to 

C’ 

C2 

c 

C’ 

C3 C” 

C’ 

Fig. 1. Schematic representation of a fragmentation. This fragmentation involves breaking two 
bonds. The arrow indicates the positive charge placement. 
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fire. The right-hand side process then can be simulated to determine which 
data points one would see if this modification of the situation were true. As 
long as the combinatorics of modifying the situation are not crippling, this 
general technique should allow representing knowledge (when known) only in 
its predictive form. It may be more efficient or more precise to represent it in 
its inverse form in many cases, but it is sufficient to represent it only once in 
some cases. 

In the case of DENDRAL this general technique was applied in the 
following way. From the empirical formula and the definition of the class 
skeleton, the program can readily determine the numbers and types of atoms 
and unsaturations that are not part of the skeleton and which thus are available 
to form the substituent structures that distinguish the particular compound 
under investigation. It remains to determine the exact composition of each 
substituent and its location on the skeleton. To do this determination, the mass 
spectrum is consulted for evidence that can be associated with each of the 
hypothesized breaks. In general, all these breaks may have occurred, but the 
fragments resulting from a particular break will have compositions that differ 
depending on how the substituent atoms are divided among the fragments. The 
program determines for each break all the ways the substituent atoms may be 
divided and the evidence in the spectrum associated with each division. This 
process of course does not determine the exact location or composition of a 
substituent. However, combining the information from all the breaks further 
narrows the possible arrangements. 

The PLANNER, and its component MOLION, are good illustrations of the 
design of the DENDRAL system and the general philosophy of modular and 
flexible design that characterized the project. Little explicit formal theory 
underlies these programs. However, their ad hoc character is their strength 
when combined with program flexibility. Since so much of any scientist’s 
knowledge is intuitive and judgmental, it cannot be readily formalized. Pro- 
grams such as those we have just described nonetheless permit this knowledge 
to be employed in useful ways. The processing speed and clerical superiority of 
the computer in fact amplify, in many cases, the power of the scientist’s 
informal knowledge. A particular case in point is the PLANNER’s analysis of 
spectra taken from unseparated mixtures of estrogens, described in [49]. The 
record-keeping and cross-checking demands of this task are too great to permit 
a thorough job by hand, yet the program is able to identify correctly the 
number and structure of compounds in mixtures. 

3.4. Testing 

If planning were perfect and generating were exhaustive, no spurious 
solution candidates would be produced and no solutions would be missed. 
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DENDRAL planning, however, is not perfect and so a testing phase is applied 
to each candidate. There are two reasons why planning cannot be perfect even 
in principle. First there may be tests that can only be applied to fully specified 
solution candidates or to sets of them. Second there may be tests that are too 
costly to apply in the planning phase but are not too expensive to apply 
to the smaller set of solution candidates. Both these factors operate with 
DENDRAL. 

The program that tests the generator’s output has been called the PREDIC- 
TOR because of what it does. The production rule version was written by 
Buchanan in the late 1960s after a procedural version had been written. A 
summary of that account was published as part of the story of how production 
rules were chosen to encode knowledge for MYCIN: 

The [DENDRAL] programs are knowledge-intensive; that is, they 
require very specialized knowledge of chemistry in order to produce 
plausible explanations of the data. Thus a major concern in re- 
search on DENDRAL was how to represent specialized knowledge 
of a domain like chemistry so that a computer program could use it 
for complex problem solving. 

MYCIN was an outgrowth of DENDRAL in the sense that many 
of the lessons learned in the construction of DENDRAL were used 
in the design and implementation of MYCIN. Foremost among 
these was the newfound power of production rules. . . . [7, p. 81 

This program is driven by a set of production rules that define a theory of the 
behavior of compounds in a mass spectrometer. The production rules state that 
structures of a given form will fragment in certain ways. They are thus like the 
predictive rules used in PLANNER, except that the format is more general. 
Given a set of productions, PREDICTOR applies them to a proposed structure 
graph to predict what ions will be produced; the productions may be applied 
recursively to all ion graphs they produce. The result is a predicted mass 
spectrum that can be compared to the actual data from which DENDRAL 
began. Structures that produce spectra in close agreement with the data are 
ranked highly. 

The situation-part of a PREDICTOR production describes a chemical graph. 
The action-part of the production consists of a set of operations that alter the 
graph to produce other graphs. The action-part may contain a complete 
production as a component, so that some operations are performed condition- 
ally. Thus the productions are strongly hierarchical. The operations that 
PREDICTOR permits are any LISP functions; predefined operations define 
fragmentations, hydrogen transfers, loss of neutral molecules such as water, 
and means for computing relative abundances of the products of the fragmen- 
tation processes. Section 3.4.2 provides more details. 

The PREDICTOR control structure applies the production rules to a set of 
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ions. First a molecular ion is constructed and placed as the only item on an ion 
list. The set of productions is scanned, and each one that is applicable is 
applied to produce one or more new ions that are then added to the end of the 
ion list. When all applicable productions have been applied, the current ion is 
put into the spectrum list and the next ion on the ion list is selected. Some ions 
may arise from more than one fragmentation process. When all ions on the ion 
list have finally been processed (or the maximum permitted depth of recursion 
has been reached), the spectrum list then corresponds to a mass spectrum. 
Each entry is an ion that has a mass or composition, and each has associated 
with it a number that denotes its relative abundance. The abundances are 
accumulated and normalized to produce the predicted mass spectrum. 

The first class of compounds to which DENDRAL was applied was the 
amino acids. In predicting the behavior of these compounds in the mass 
spectrometer, it was assumed that every bond that could break, would break, 
and they would do so one at a time. This assumption is the zero-order theory of 
mass spectrometry, so-called because it takes into account no site-specific 
information. This theory proved insufficient for other classes of compounds 
although it is close to correct for the amino acids. 

Intermediate versions of the predictor (early 1970s) used class-specific prod- 
uction rules of the form described below. A later version, called MSPRUNE, 
reverted to the half-order theory (Section 3.4.4) as a general predictive theory 
in order to avoid the necessity of encoding class-specific knowledge or of 
assuming that knowledge of all of the relevant classes had been encoded. 
Another predictive program, called REACT, was added to the system to make 
predictions about the reaction products that one would observe if each of the 
candidate compounds were put in various chemical reactions [56]. Thus, just as 
constraints may be inferred from data resulting from different techniques, tests 
can be specified that use different techniques. In general, of course, the 
precision of the interpretive or predictive form of knowledge, and the ease of 
specifying each, will determine whether knowledge is used for constraining a 
generator or testing its results. 

3.4.1. Representation of chemical graphs 
Each node of a chemical graph is given a number and a name. These are 

redundant and both exist only for reasons having to do with LISP conventions, 
but we include both in our examples so that they correspond to program 
listings. The node is described by indicating the type of atom, its connectivity 
to other nodes, the number of unsaturations (double bonds) from the node 
(these are called “dots” because dots are used in diagrams to stand for 
electrons, a pair of which can make an additional bond) and the number of 
hydrogens attached to the node. Connections are indicated by a list of node 
names enclosed in parentheses. The entire node description is enclosed in 
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parentheses. Finally the list of nodes defining a structure is enclosed in 
parentheses along with the name of the structure.* 

To illustrate, consider C,H,OH. We arbitrarily use the number of a node as 
its name: 

NODE DIAGRAMS 

6=7 H H 
/ \ C=C 

5 l-2 / \ 
\ / HC C-OH 

4-3 \ / 
c-c 
HH 

Atom 
name 

Atom 

type 

Node 
number 

Neighbors Dots Number of 
hydrogens 

Cl C 1 (2 3 7) 1 0 
02 0 2 (1) 0 1 
c3 C 3 (1 4) 1 1 
c4 C 4 (3 5) 1 1 
c5 C 5 (4 6) 1 1 
C6 C 6 (5 7) 1 1 
c7 C 7 (1 6) 1 1 

The complete notation is (spacing on the page is irrelevant and is chosen for 
readability): 

(PHENOL 
(Cl c 1 (2 3 7) 1 0) 
(02 0 2 (1) 0 1 ) 
(C3 c 3 (1 4) 1 1) 
(C4 c 4 (3 5) 1 1) 
(C5 C 5 (4 6) 1 1) 
(C6 C 6 (5 7) 1 1) 
(C7 C 7 (1 6) 1 1)) 

‘The original representation of a chemical graph was as a LISP list with sublists indicating 
branching. A second notation was as a list of LISP atoms [for example, (Cl, 02. C3)]. each with 
its own property list indicating the properties of NEIGHBORS, NUMBER OF HYDROGENS, 
DOTS, etc. The representation described here is faster and more compact because it uses fixed 
positions in lists instead of explicit names and values. Note that there is some redundancy in the 
connection tables regarding numbers of neighbors, “dots”, and hydrogens for an atom with a given 
type. This was done to decrease computation time. The representation used in CONGEN is a 
compressed matrix representing the same connectivity information in a canonical form. 
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The same notation is used to describe classes of structures in which some of 
the information is not completely specified and partial matching of left-hand 
sides is required. In particular, substructures are defined in such a way that 
their connections to larger structures are not uniquely defined. The symbol 
“X” when used in a connectivity list denotes exactly one connection to a node 
outside the subgraph. The symbol “--‘I means “don’t care”. When used in the 
position of a node, “--” denotes zero or more connections outside the 
substructure; when used instead of an integer as a dot or hydrogen-count 
parameter, it indicates any integer value, including zero. 

The alcohol substructure is X-C-OH, represented as: 

(ALCOHOL 
(Cl c 1 (2 x --) --) 

(02 0 l(1) 0 1)) 

3.4.2. Representation of production rules 
Each production consists of a situation-part and an action-part. The situa- 

tion-part is a predicate, which is either true or false of the structure under 
consideration. For example, the predicate ISIT (X) evaluates to true if X is a 
substructure of the active ion, that is, the one to which the production is being 
applied. The special argument-free predicates NIL and DEFAULT may be 
used as the situation-part. NIL always evaluates to false; this predicate is used 
to take a production out of action temporarily without actually deleting it from 
the production set. DEFAULT evaluates to true if and only if all previously 
tried productions have proved inapplicable, 

Other situation-part predicates are specific to chemistry. DB(N, M) is true if 
there is a double bond between nodes numbered N and M. WHERE(S) is like 
ISIT, but returns a list of correspondences between atoms in S and in the active 
ion if there is one. MISSING(N, M) is true if nodes N and M are not 
connected. ON(S, N) is true if substructure S is contained in the active ion, 
with node N substituted for any unspecified atoms in substructure S. ON, and 
WHERE, where true, produce as side-effects an indication of all the mappings 
from subgraph to active ion that constitute a match of the subgraph. This 
information is available for use by functions in the action-part of the prod- 
uction. 

The action-part of a production is more complex, but is intended to use 
names and descriptions commonly used for processes that occur in the mass 
spectrometer. It may have more than one component. Each component may 
itself be a production. A component also may be the name of a function that 
will be executed, selecting its parameters from the current context. Finally, a 
component may be a list of two or three functions specific to mass spec- 
trometry. A break function produces new ions from the active ion and adds 
them to the ion list. An intensity function determines an intensity for each 
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newly formed ion. It may be a number indicating the relative abundance of the 
parent ion to be assigned to the daughter ion, or a function that specifies how 
to calculate an intensity. For example, a process may produce an ion whose 
intensity is half that of the parent. A transfer function produces additional ions 
according to rules of hydrogen transfer (or transfer of other radicals) but does 
not add these to the ion list. (The transfer function is optional and may be 
absent.) Each function list component has a label that is used in the output to 
indicate the source of each spectral peak. The label is the first symbol in the 
function list. 

To summarize, a PRODUCTION is (SITUATION-PART ACTION- 
PART). 

A SITUATION-PART is one of the following three forms: 

(1) (ANY LISP PREDICATE), for example, ISIT, WHERE, DB, ON, 

(2) (NIL), 
(3) (DEFAULT). 

An ACTION-PART is a list of ACTION-PART COMPONENTS. 
An ACTION-PART COMPONENT is one of the following three forms: 

(1) (LABEL; BREAK-FUNCTION; INTENSITY-FUNCTION; 
TRANSFER-FUNCTION (optional)), 

(2) ANY LISP FUNCTION, 
(3) a PRODUCTION. 

The following production for estrogens is a production rule formulation of a 
basic five-rule theory of estrogen fragmentation. The intensity function of each 
component of the production is here the integer 100, which simply means that 
any generated ion will be assigned 100 percent of the intensity of the ion from 
which it derives. The estrogen production has five function list components; 
each function list is associated with a particular break definition; the break 
name is used as the label of its function list. The functions BREAKBND and 
HTRANS are a break function and a transfer function, respectively, to break a 
bond, or a set of bonds, and to transfer hydrogens. BREAKBND creates only 
one charged fragment in each break, namely the one containing the first atom 
of the first pair. Also, BREAKBND refers to the list of correspondences 
created when the left-hand side was matched, in this case by the WHERE 
function. 

((WHERE ESTROGEN) 
(B (BREAKBND((14. 15) (13. 17)) lOO(HTRANS -1 0)) 
(D (BREAKBND((9. 11) (14. 13) (16. 17))) lOO(HTRANS -2 -1)) 
(C (BREAKBND((9. 11) (14. 13) (15. 16))) lOO(HTRANS -1 -0)) 
(E (BREAKBND((ll. 12 (8. 14))) lOO(HTRANS -1 0)) 
(F (BREAKBND((9. 11) (8. 14))) lOO(HTRANS -1 0)) 
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A syntactically more complex production is one that defines McLafferty 
rearrangement, shown in Fig. 2. The structures that undergo this rearrange- 
ment contain the substructure named GRAFMC, shown below. 

(GRAFMC 
(1 c x (2 4 --) 1) 
(2 -- x (1 --) 1) 
(4 -- x (1 5 --)) 
(5 -- X (4 6 --)) 

(6 C X (5 -->>I 

The production is labeled MCLAFFERTY. It corresponds to a mass spec- 
trometric process that occurs in many cases and has thus been defined and 
named so that it may be referenced in defining class-specific productions. The 
situation-part of the MCLAFFERTY production is (WHERE GRAFMC). 
The action-part of MCLAFFERTY uses six functions. Two of them, LAST- 
ION and LASTINT, simply return the previous ion and its intensity, respec- 
tively. Three of them MRRFGT, MRRFGT2, and MRRFGT3, produce the 
required hydrogen migrations before performing breaks that produce new ions. 
The final function, GAMMACLEAVAGES, produces (possibly) several ions 
by producing all gamma cleavages.3 These functions were named for three 
reasons: readability, explanation, and reusability. Each of these reasons is an 
important design consideration in today’s expert systems, but this was not 
obvious in the late 1960s. 

The other subgraphs referenced in the MCLAFFERTY production are 
defined in [37]. The integers used as intensity functions are interpreted as 
before: the intensity of the generated ion is the indicated percentage of the 

Fig. 2. McLafferty rearrangements. (Reproduced by permission. Source: G.W.A. Milne. ed.. Mass 
$ectrometry: Techniques and Appkcations (Wiley, New York, 1971). Copyright 0 1971, John 

Wiley & Sons, Inc.) 

‘The bonds connecting a structure to a group are said to be alpha to the group. Bonds more 
distant are called beta, gamma, and so forth. 



DENDRAL: a case study 237 

intensity of the current ion. The MCLAFFERTY production is 

(MCLAFFERTY 
((WHERE GRAFMC) 

((WHERE GRAFMCMETHYL) 
(MCLAFFCH3 MRRFGT3 100) 
(MCLAFFERTY MRRFGT 200)) 

((WHERE GRAFDBLMCALPHA) 
(DBLMCLAFF MRRFGT3 100) 
(DBLMCLAFF MRRFGT2 100) 
(MCLAFFERTY MRRFGT 200)) 

(DEFAULT 
(MCLAFFERTY MRRFGT 200)) 

((WHERE GRAFMCS) 
(MCLAFFERTY +l LASTION (LASTINT 10) (HTRANS 1)) 
(GAMMA GAMMACLEAVAGES (LASTINT 100))))) 

Two of the functions used by these productions are (the definitions, of 
course, are in LISP): 

l GAMMACLEAVAGES 
(1) Find all bonds gamma to node 2. 
(2) Break each bond in turn. 
(3) For each bond broken, create an ion containing node 2. 
(4) Return the list of ions created. 

. MRRFGT 
(1) Migrate a hydrogen atom from node 6 to node 2. 
(2) Break the bond between nodes 4 and 5. 
(3) Return a list containing the ion containing node 4. 

3.4.3. Ranking the candidate explanations 
When there is more than one hypothesis consistent with the data, additional 

tests are needed to discriminate among the candidates. Often this involves 
additional experimental work. In DENDRAL we looked at two different kinds 
of tests: those involving data point in the mass spectrum already in hand and 
those involving additional data. Additional data might come from NMR, 
C13-NMR, or from reaction chemistry as mentioned above. Here we just 
explain the use of data in the mass spectrum that were not already used to infer 
constraints for the generator. 

Different models, or “theories”, of mass spectrometry can be used to predict 
the fragmentations of a molecular skeleton. The type of fragmentation theory 
to be used depends largely on the context of the structure elucidation problem. 
When one initially studies a new class of compounds, or when one attempts to 
discriminate among different candidate structures obtained from some unusual 
CONGEN problem, it is usually appropriate to use some universal form of 
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fragmentation theory that expresses very general chemical principles. Although 
a general theory will be applicable and will not be biased in its predictions, it 
may well prove to have poor discriminatory power. Fine discrimination among 
related structures generally requires more refined fragmentation theories 
wherein one assigns different plausibilities to alternative fragmentation pro- 
cesses. When processing isomers from some well-characterized class, the 
appropriate fragmentation theory may well involve the detailed specification of 
substructures, their bond cleavage processes, and the accompanying specific 
transfers of hydrogen atoms or other molecular fragments. 

In the following subsection we show how even the most general “half-order” 
fragmentation theory can serve to discriminate among isomers of moderately 
complex structures such as monoketoandrostanes. (The skeleton of this class is 
illustrated in Fig. 3.) Refinements of the simplest half-order theory involve, 
first, the use of estimates of relative plausibilities of fragmentation processes of 
differing degrees of complexity and, subsequently, the association of relative 
plausibility values with some classes of bond cleavage. 

3.4.4. The half-order theory of molecular fragmentation 
The simplest model of molecular fragmentation is the ALLBREAKS, or 

zero-order, “theory” that predicts ions arising from all possible bond cleavages 
and combinations of cleavages and transfers of atoms between fragments. Such 
a model is too general for almost every problem in computer analysis of mass 
spectra. (However, the zero-order theory was the method of spectrum predic- 
tion in the first application of Heuristic DENDRAL to amino acids.) DEN- 
DRAL’s “half-order theory” of mass spectrometry is a constrained version of 
the ALLBREAKS model of molecular fragmentation: virtually any bond is 
broken subject to the constraints listed. The half-order theory is a very loose 
model that constrains a set of possible processes to those that are more 
plausible. It still does not represent a comprehensive model of fragmentation. 

The constraints that can be expressed in the half-order theory include 

Fig. 3. Monoketoandrostane skeleton 
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limitations on the number of bonds that may be broken and the number of 
allowed hydrogen transfers into or out of the charged fragment. Each predicted 
ion is formed by a “process” involving (1) one or more cleavages of the graph 
into two parts, (2) possible H-transfers, and (3) possible losses of neutral 
fragments. Each cleavage may be a break of one acyclic bond, two bonds 
within a ring, or a group of three bonds in an edge/fused ring system. One 
complete process shown in Fig. 4 would, for example, involve fused ring 
cleavage, simple ring cleavage, and acyclic bond cleavages; such a process 
would involve a total of six bond breaks. To summarize, the constraints used 
with the half-order theory include: 

(1) Allow cleavages or pairs of cleavages each involving one or two single 
bonds, with not more than three bonds in total. Do not break double or 
triple bonds, or bonds in an aromatic ring. 

(2) Prohibit the cleavage of two (non-hydrogen) bonds from the same 
carbon atom (for this cleavage would formally leave a fragment that is 
normally energetically unfavorable). 

(3) Restrict transfers between fragments to at most two hydrogen atoms. 

A simple use of the half-order theory for testing is implemented in the 
MSPRUNE function. MSPRUNE helps a chemist reject CONGEN structures 
by estimating the difficulty of determining the origin of any specific ion in the 
spectrum from each of the candidate structures. Even in this very limited form, 
the half-order theory can be of value in helping to identify candidate structures 
compatible with spectral data. For example, a simple ring cleavage and 
hydrogen transfer are a simpler explanation than cleavage of a fused ring 
system. MSPRUNE uses such differences to eliminate candidate structures 

WI. 
Generally, we have found it to be more effective to employ the data in the 

entire observed mass spectrum, and rank candidate structures according to how 

Fig. 4. Complex break process. 
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well they serve to explain the spectral data. This ranking is accomplished 
through the MSRANK function, which allows the user to define the constraints 
of the half-order theory and to specify the form of the scoring function. The 
score assigned to a candidate structure is determined from the importance 
accorded to those of the observed ions that can be generated by the allowed 
fragmentations of that candidate. As ions at higher mass and intensity values 
are generally of greater structural significance, degrees of importance are 
accorded to each observed ion in the spectrum by some function of its mass 
and intensity. 

4. Results and conclusions 

As has been emphasized, no one program is called DENDRAL. It should 
also be clear that DENDRAL is not a special-purpose system for solving just a 
few specific problems in chemistry. Heuristic DENDRAL is a framework for 
helping chemists with structure elucidation problems in various ways. Some of 
the knowledge embodied in the system, such as the stability knowledge 
codified in the a priori GOODLIST and the a priori BADLIST, is general. 
This is also the case for the basic mass spectrometry theory that is embodied in 
the PLANNER and PREDICTOR programs. The class-specific and problem- 
specific chemical knowledge used by Heuristic DENDRAL is supplied by the 
chemist-user; the programs, however, are intelligent enough to understand 
such specifications and make use of them. 

In addition to being a mass spectrum problem-solving engine of various 
configurations, the programs can be used in a more general vein as aids to 
chemists with structure elucidation problems. CONGEN, for example, is a 
symbolic graph manipulator for the chemist, analogous to algebraic and 
analytic symbolic manipulators for the mathematician, such as REDUCE [22] 
and MACSYMA [38]. 

4.1. CONGEN results 

Of all the DENDRAL programs, CONGEN (later extended and renamed 
GENOA) is clearly the most generally useful and has been applied to current 
research problems by several chemists. The range of problems to which 
CONGEN is applicable is great although only a few dozen applications were 
made by the Stanford Group. Each of these is a relatively specialized problem 
whose importance is only clear in the context of a larger chemical issue. 

Applications of CONGEN are no longer under close supervision by DEN- 
DRAL project members. This fact speaks for the maturity of the program but 
makes it difficult to enumerate problems to which it has been applied. It works 
well on “medium size” problems in which it is combining eight to ten atoms 
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and superatoms at a time. If the chemist has interpreted data in terms of large 
superatoms (along with other constraints) then the program can manage 
structures with on the order of 100 atoms. 

The final number of structures is strongly dependent on the chemist’s ability 
to aggregate separate atoms into superatoms and infer other structural con- 
straints from the available data. Because of the subtle and powerful interac- 
tions among constraints, it is difficult to estimate the final number of structures 
that will be produced. Nevertheless, a user can interrupt CONGEN at any time 
to request an estimate of the number of structures remaining to be generated. 
Although the estimates are rather crude, they are valuable for indicating that 
the program needs more constraints, for example, if 200 structures have been 
generated and CONGEN estimates that it is only 5 percent finished. 

Much of the collaboration with other chemists has been informal and has 
been undertaken with the dual expectation of providing useful service while 
leading to new CONGEN research areas. Some examples of problems are 
listed here to give a sense of the range of structures for which CONGEN has 
been of service. 

(1) Chemical constituents of body @ids (e.g., organic acids, amino acids). 
Generate structures within constraints derived from knowledge of 
chemical isolation procedures and human metabolic processes to identify 
compounds in the gas chromotogram/mass spectrum traces of patients 
with suspected metabolic disorders of genetic origin. 

(2) Terpenoids. Generate structures within constraints (including four to six 
large superatoms) to identify Cl5 and Cz,, compounds isolated from 
natural sources. These were also tested to see if candidate structures 
obeyed the isoprene rule that restricts interconnections of 5-carbon 
superatoms [ 13, 521. 

(3) Marine sterols. Determine the sterols (within numerous constraints) that 
could be metabolic precursors of known sterols in marine organisms in 
order to guide identification of unknowns. 

(4) Insect secretions. Confirm the structural possibilities in problems involv- 
ing the identification of insect hormones and other insect defense 
secretions. 

(5) Rearrangement products. Obtain all structural possibilities under avail- 
able constraints to help solve the structures of chemical and photochemi- 
cal rearrangement products of unsaturated hydrocarbons (e.g., a tricyclic 
C, , H,, hydrocarbon) and polycyclic molecules [.55]. 

(6) Zon structures. CONGEN has also been applied to the problem of 
generating the structures of gaseous ions. This application has been 
done, for example, for the case of triethylamine, (CH3CH,),Nt-. See 
[53] for an explanation of the underlying mass spectrometry fragmenta- 
tion mechanisms of this and related compounds. 
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(7) Pharmacologic agents. CONGEN has been used to help solve the 
structures of several compounds displaying pharmacologic activity in- 
cluding some nitrogen heterocycles, pesticide conjugates, and metabolic 
products of microorganisms. 

4.1.1. Status 
This project was specifically conceived because it addressed the AI problem 

of understanding scientific reasoning in the context of an important and 
ubiquitous practical problem in organic chemistry. It was developed initially by 
the members of the team oriented to computer science. After several years of 
transition, it was transferred to computationally oriented chemists on the team 
with a continuing view toward making it a practical and usable system. 
Eventually, after more than 15 years of intense academic effort, the DEN- 
DRAL programs were licensed by Stanford to a commercial concern marketing 
software to chemists. The ideas had been refined and tested in the academic 
environment beyond the point of justifying continued effort and funding on the 
basis of research. Moreover, a commercial company is usually a more effective 
organization for technology transfer than a university, and we hoped DEN- 
DRAL would be widely used. We know it was, in our hands, a useful tool for 
the chemist solving structure elucidation problems in its symbiotic (CONGEN/ 
GENOA) form, and that its performance rivaled that of non-expert chemists in 
its full (plan-generate-test) form on classes of compounds for which it 
possesses the requisite knowledge. Efforts were made to make the programs 
usable and “friendly” to working chemists. Nonetheless, the impact of these 
programs on the conduct of organic chemistry has been quite limited. It is 
likely that few chemists even know of the existence of the programs. Only a 
few laboratories have made use of the whole system. 

A version of GENOA (re-written in the C language) is commercially 
available,4 but as of this writing development work on it has not been done for 
many years. Parts of the DENDRAL system such as algorithms for matching 
substructures are used commercially, for example to search a drug company’s 
library of compounds for those that contain a biologically active substance. 

There are of course a host of difficulties facing those attempting to transfer 
technology from the research laboratory to application, even when the applica- 
tions themselves are to research problems carried out by other researchers 
sympathetic to these issues. However, there are also some limitations of 
DENDRAL that go beyond the usual problems of technology transfer. In 
brief, the system best handles smaller problems for which expert chemists need 
less assistance. The expert chemist can still reduce many problems that are 
beyond DENDRAL’s scope to manageable, paper-and-pencil problems. 

’ Molecular Design, Ltd., 2132 Farallon Drive, San Leandro, CA 94577, USA. 
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There are some important qualifications that must be made to the preceding 
observation. In the first place, expert systems are often developed to be of 
assistance to the less-than-expert practitioner. Thus they may be valuable in 
the sense of making available a level of performance and ability that falls short 
of, or at best rivals, their best human counterparts, as when electronic 
troubleshooting skills are made available to new field service personnel. 
However, this does not seem to be a useful niche for DENDRAL; the difficult 
structure elucidation problems are those faced by the experts, and the easier 
problems that require solution, for instance in routine medical applications 
such as identification of toxic substances, are frequently solvable by other 
methods such as library search. DENDRAL is not useful for the largest, most 
difficult problems for which experts want assistance. 

There is another role that DENDRAL may play. That is the role of solution 
checker. Since the DENDRAL generator is thorough in its consideration of 
the constraints provided by the data, if it were to rule out a solution “found” 
by a chemist, that would with certainty indicate an error either in the analysis 
by the chemist or the statement of the constraints. Closely related to this 
function is the role that DENDRAL can play in discovering alternative 
solutions not found by the chemist. Since DENDRAL’s generator is merciless- 
ly exhaustive in its consideration of alternatives, it may well find solutions that 
are consistent with the given constraints but were not considered by the 
chemist. Of course it may be the case that the chemist’s own analysis employed 
constraints or other knowledge that was not explicitly reported or that could 
not readily be formulated in DENDRAL’s constraint language. In an informal 
study of about a dozen published papers, DENDRAL often did discover 
alternative solutions using the published constraints. However, in all but one 
case the right solution (as determined by additional experimental data) was the 
one the chemist found. In the lone exception, the chemist recognized a few of 
DENDRAL’s alternative solutions as potentially correct although he had 
overlooked them. These observations suggest that routine checking of solutions 
before publication could improve the accuracy and completeness of published 
reports and raise confidence in them. Whether this would be a worthwhile 
application depends on the costs of the computation involved, among other 
factors. 

The model of use implicit in the CONGEN/GENOA systems is that a 
chemist will bring to the program a body of data about an unknown compound, 
will transform the data into a set of generator constraints, and will then wait 
for a list of possible solutions. In practice, if the generator produces only a few 
candidates the problem was possibly easy enough that the chemist would have 
succeeded unaided. If the candidates number one thousand or more, the 
problem remains virtually unsolved. It is only when perhaps a dozen to a 
hundred candidates are generated that the program has made an important 
contribution. This is a rather small window. Without computer assistance, the 
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chemist will not know exactly how large the space of remaining candidates is, 
but will be quickly aware if it is unmanageable. In that case, more data are 
sought. If that is not possible, data may be “invented”; that is, the chemist 
assumes that the compound must satisfy other plausible though unproven 
constraints, such as being a member of a particular class of compounds 
(perhaps because all compounds from the same source are members of that 
class). 

Seemingly, DENDRAL would assist in this sequential model as well, by 
relieving the chemist of the burden of generation at each step, while guarantee- 
ing completeness. The generation is modular; that is, additional constraints can 
be applied to a candidate set to further reduce it without regeneration de novo. 
We do not know why this strength of the CONGENiGENOA model is not 
marketable. 

There is a related way in which DENDRAL could help, namely by assisting 
in the selection of new data. For example, the candidate set could be subjected 
to “what if” experiments. What if we knew that the compound was of class C; 
how many candidates would remain? What if it contained substructure S; how 
many candidates would remain? The constraint that would most greatly reduce 
the candidate set would then determine the next piece of laboratory work to be 
done. Unfortunately, DENDRAL offers the user little assistance with this 
method (although some preliminary work on this problem was done). 

We summarize with some speculations on why DENDRAL is not used more 
widely: 

(1) Chemists do not know it exists. 
(2) The hardware/software are too expensive. 
(3) The chemist does not wish to invest the time to learn the system. 
(4) Exhaustive generation is not seen as essential to the structure elucida- 

tion problem. 
(5) An attitude that “That is not the way it is done”, or that a tool “not 

invented here” is not worth using, or that “Machines can’t think; that’s 
my job”. 

(6) The chemist and DENDRAL do not collaborate intensively over a long 
period of time (much of the chemist’s time is spent in the lab); so, like a 
fire alarm, its value is underestimated. 

(7) DENDRAL is not cost-effective for any single individual (though it 
may be for an entire company). 

(8) Chemical and pharmaceutical companies do not cooperate and share 
resources. 

(9) Pieces of the DENDRAL system, e.g., structure-matching algorithms, 
were easier to market than the whole system. 

(10) The niche that DENDRAL fills is not perceived by chemists as 
important enough to warrant use of the system. 
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4.2. Lessons for the implementation of intelligent systems 

DENDRAL is an extensive case study of one of the first knowledge-based 
programs. Because it is a direct progenitor of MYCIN, and thus of today’s 
expert systems, the development of DENDRAL is historically significant. It is 
designed around the exclusion paradigm of problem solving in which all 
implausible answers are excluded from a complete solution space, leaving only 
the plausible ones. It is implemented within the programming structure of the 
plan-generate-test paradigm. The performance of DENDRAL illustrates the 
power of this paradigm. It also clearly points to a number of details of this 
methodology that deserve careful consideration in its application. The exist- 
ence of the generator is a sine qua non. Before the dendritic algorithm, there 
was no unique naming convention and no generating function that guaranteed 
complete, non-redundant coverage of the space of topological descriptions of 
chemical structures. Not every application has such a generator; most do not. 
The invention of one may require considerable intellectual effort. 

A generator of English sentences might be briefly considered as a generator 
of hypotheses in some problem areas. The main drawbacks, however, are that 
(1) there are far too many legal sentences containing, say, fifty words or fewer, 
(2) there is no guarantee that the solution would be describable in a sentence 
of any arbitrarily fixed length-it may require 51 words, for example-and thus 
there is no decision procedure for problem solving, (3) the obvious ways of 
generating sentences are purely syntactic, yet information available for con- 
straining the generator almost certainly carries semantic content. 

Some specific lessons we can suggest are the following: 

Lesson 1. The efficiency of the generator is extremely important. Even with 
effective planning and testing, the power of the problem solver will often be 
limited by how quickly candidate solutions can be enumerated. It is particularly 
important that constraints can be applied effectively. 

One interesting improvement in CONGEN involves spending a little extra 
time at the beginning of a session to save enormous amounts of time later. 
There are numerous, logically equivalent ways of specifying constraints to 
CONGEN that differ greatly in efficiency. It is unreasonable to expect a 
chemist using CONGEN to be familiar enough with the program itself to know 
which specifications are more efficient than others. (It is also unreasonable to 
ask the chemist to seek advice every time from one of the local CONGEN 
experts.) Thus a “smart interpreter” of constraints was developed [20]. The 
goal is to have it accept the chemist’s statement of the problem and understand 
both the chemistry and the computational procedure well enough to transform 
the given constraints into an equivalent, more efficient set of specifications. 

Lesson 2. The use of depth-first search, which provides a stream of candi- 
dates, is generally better (in an interactive program) than breadth-first search, 
in which no candidates emerge for examination until all are generated. To a 
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programmer the two methods are equally easy to implement. To a chemist 
waiting for help with a structure problem the difference is substantial. It is far 
more pleasing to see some answers quickly, and it is more efficient in those 
cases where the first few answers reveal mistakes in the problem specification. 
In those cases, the chemist can interrupt the program, change the constraints, 
and restart. 

Lesson 3. Planning is in general not simply a nice additional feature but is 
essential for the solution of difficult problems. As much knowledge as possible 
should be brought to bear at this stage rather than at the testing stage, because 
this point is where the search can be cut drastically. 

Lesson 4. Every effort to make the program uniform and flexible will be 
rewarded. The user should be provided with as many options as one can think 

of (with defaults established to remove the burden when the flexibility is not 
needed). Every decision strategy and parameter that is hardened into the 
program will become a limitation not open to examination or easy modification 
and not easily remembered. 

Lesson 5. An interactive user interface is not merely a nicety but is 
essential. For a high-performance computer program to capture the sustained, 
widespread attention of working scientists, it must contain a large number of 
features that make it easy and pleasant to use. These features are commonly 
termed “human engineering aspects” of a program. In very rare instances, a 
program will be so useful that it will be widely adopted even without proper 
attention to human engineering. More often, programs that are understandable 
only to programmers are used, if at all, only by programmers. 

The prompts and descriptions printed by the DENDRAL programs have 
been designed by chemists to be terse, informative, objective, and courteous. 
These are not always consistent goals, but with careful attention the dialogue 
can be free of flagrant affronts to our feelings. Along the same lines, it should 
be noted that a person’s right to privacy cannot be ignored in scientific 
programs. In CONGEN we rely on the standard protection mechanisms built 
into the computer system, but we will need more security if we are to satisfy 
users in chemical industries. 

Lesson 6. An interesting extension of the plan-generate-test paradigm 
could improve its power: search and generation might be combined into a 
single problem solver. In the context of DENDRAL this combination would 
mean that the generation of isomers would be guided by a search through a 
related problem space. The problem states would most naturally be chemical 
structure graphs, and the transformations would append, delete, and rearrange 
constituents. A proposed alteration would be considered for its effects on the 
mass spectrum, and a hill-climbing technique, for example, might drive the 
search. Successful (“warming”) modifications would become GOODLIST 
constraints on generation. Numerous variations on this theme can be en- 
visioned. We briefly explored hill-climbing methods and the use of an evalua- 
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tion function to give us best-first search, but here our focus on mass spec- 
trometry kept us from developing these ideas. We wanted to guide the search 
by comparing predicted partial spectra (from partial structures) with the 
original spectrum, and then adding more structure so as to reduce differences. 

Goal regression has been proposed [24] as a way of modifying a hypothesis 
to improve its predictive accuracy. In this model, the difference between 
observed and predicted data focuses the search for modifications that will 
reduce the difference. Something like this model was explored briefly for 
DENDRAL in the following form: 

(a) Given an observed mass spectrum MS, and a candidate molecular 
structure S, 

(b) Predict a mass spectrum MS, for S, 
(c) Analyze the difference between MS, and MS,, 
(d) Adjust S to minimize that difference. 
The problem that we encountered was that we lacked GPS-like difference- 

reducing operators. We were unsuccessful in finding any in mass spectrometry 
because very small changes in molecular structure may cause very large 
changes in the distributions of mass spectrometry processes, with correspond- 
ingly large changes in the resulting spectra. Thus we had to rely on forward 
generation of alternatives without benefit of back-propagation of useful adjust- 
ments. 

Lesson 7. Choice of programming language is becoming less of an issue. We 
originally did not have access to a language that combines the flexibility and 
debugging power of LISP with the running speed and exportability of C, for 
example. This language conflict causes a dilemma at the start of a large 
programming effort whenever the designer hopes for widespread use of the 
resulting program. Networking provides a partial answer to the exportability 
question, since widespread use can be accomplished by long distance sharing of 
a complex program. The increased efficiency and availability of LISP also 
make this issue nearly irrelevant now. 

Lesson 8. Providing assistance to problem solvers is a more realistic goal 
than doing their jobs for them. In the first place it removes some of the 
psychological barriers that people often exhibit toward machines. Also, the 
amount of work involved in automating the whole task may far outweigh the 
benefits and in any case will delay the appearance of any benefits considerably. 

Lesson 9. Record keeping is an important adjunct to problem solving. Every 
laboratory assistant is expected to keep a good laboratory notebook: the same 
should be true for a computer apprentice. Of the many ways of realizing the 
goal of helpful records, only some have been explored in the context of 
DENDRAL. 

We did not provide interactive explanations. But we did expect the DEN- 
DRAL programs to provide three different kinds of notes to back up its 
reasoning from initial data and constraints to ranked hypotheses: 
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(a) a record of initial conditions, intermediate conclusions, and final results; 
(b) a complete record of the interaction between chemist and program 

(including erroneous entries and typing mistakes); 
(c) a trace of the program’s reasoning steps. 
Lesson 10. In order to use a program intelligently, a user needs to under- 

stand the program’s scope and limits. The scope, roughly, is the broad class of 
problems that the program is designed to solve and the context in which 
solutions will be found. The limitations of a program are those aspects that 
create exceptions to perfect performance over the whole scope. For example, 
enumerating polymeric structures is outside the scope of CONGEN, while its 
working definition of aromaticity is a limitation that is more easily changed. 
Operationally, the scope is the broad definition of the problem that can only be 
changed at the cost of writing an entirely new procedure. The limitations are 
the explicit and implicit items in the problem definition that are added to make 
the problem solvable and that may be changed or removed more readily. It is 
not a sharp distinction; the point is that a chemist needs to understand the 
program’s interpretation of the problem-its implicit and explicit 
assumptions-before it can be used responsibly and confidently. 

Lesson 11. The context in which problem solving proceeds is essential 
information for interpreting the solutions. The more an assistant can make 
explicit the assumptions and initial conditions of a problem, the easier it is for 
an investigator to understand the answers. This has always been true, but the 
emergence of computer programs as assistants brings the problem clearly into 
focus. The only step we have made along these lines with DENDRAL 
programs is to keep a good laboratory notebook, as described above. One of 
the items we try to make explicit at the time problem solutions are printed is 
the set of assumptions under which the program arrived at those solutions. 

Lesson 12. DENDRAL employs uniformity of representation in two senses: 
(a) in the knowledge used to manipulate chemical structures, and (b) in the 
data structures used to describe chemical structures and constraints. In the 
knowledge base, uniformity is important as a means of understanding and 
conveying the contents of the knowledge base as well as in problems of 
acquiring new knowledge. In DENDRAL, knowledge is uniformly represented 
in a very general form: production rules. The uses to which the knowledge is 
put, however, are many. This arrangement achieves the best of both worlds: 
we have uniformity of representation with its virtues of modularity, simplicity 
of control structure, and perspicuity, and we have the inherent power of 
multiple sources adding to and making varied uses of the common knowledge 
base. 

In the underlying data structures, uniformity is important for program 
efficiency and ease of program development. We were fortunate to have found 
just the “right level” of abstraction of chemical molecules in terms of graphs. 
The ball and stick model of molecules and its analogous graphical description 



DENDRAL: a case study 249 

are grossly inadequate for many purposes but they were quite adequate for the 
reasoning that DENDRAL needed to do. It is a convenient shorthand for what 
chemists know about chemical bonding, and thus was readily understandable. 
However, it did require doing some new mathematics, graph theory and group 
theory in particular, in order to design correct algorithms, e.g., to generate 
ringed structures without duplication of symmetric graphs. 

To summarize: successful problem solving in nontrivial domains (1) requires 
surprisingly large amounts of specialized as well as general knowledge, (2) 
requires different forms of organization for different tasks, and for different 
purposes within a given problem domain, (3) requires the productive inter- 
action of this knowledge, not merely its accumulation, and (4) can benefit from 
representation schemes that bear part of the burden of the inferential process. 
For these reasons, which have the status of empirical propositions about 
cognitive systems generally and human minds specifically, we conclude that the 
current emphasis on knowledge engineering within AI, for which DENDRAL 
is a key example and important case study, is both central and prerequisite to 
the development of artifacts of general intelligence. 

4.3. Project organization 

There have been few successful, long-term interdisciplinary projects in the 
history of science, but we believe DENDRAL should be counted among them. 
The project worked cohesively for a decade, and it involved productive 
interaction of researchers from the disciplines of chemistry, computer science, 
genetics, philosophy, physics, mathematics, electrical engineering, manage- 
ment science, and psychology. 

It is difficult to give a recipe for this success, but we believe we can list some 
important ingredients. First, the task was conceived in such a way as to appeal 
to many interests; it could have been described as a “pure” mass spectrometry 
problem, or a “content-free” hypothesis formation problem, but it was not. 
This task is not prohibitively difficult: it can be understood (with a moderate 
effort) by anyone with a modest technical background. One scientist, with 
knowledge of both chemistry and computer science, was willing to coordinate 
and arbitrate the often-conflicting efforts of the group, and was able to do it 
because others felt sufficient respect for his ideas and vision to sacrifice some of 
the traditional autonomy and rugged individualism of scientists. The project 
leaders were skilled managers who had learned to delegate responsibility 
through management of other academic organizations. They also shared a 
willingness to take risks with unproven personnel. Not the least important, a 
natural selection occurred, resulting in a staff of specialists each of whom was 
truly willing to go more than half way to understand the other’s discipline, 
paradigms, and arcane jargon. 

There was also a genuine desire among the computer science personnel to 
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create programs of value to chemists on the way to solving the big problem. 
Although many of these utilities did not use AI methods, they provided 
tangible benefits to the chemist collaborators whose assistance was essential. 
This piece of common sense (“quid pro quo”) is missing in projects that “skim 
the cream” in a new problem area and that have left colleagues disgruntled 
about AI. 

We may offer no magic advice here, but the lessons are important, and 
mistakes are costly. Interdisciplinary work is antithetical to most scientists, no 
matter how wistfully they long for it. It is expensive folly to establish a project 
or institute and fill it with scientists from a variety of disciplines, selected only 
on the basis of scientific credentials. Without leadership, specific common 
goals, mutual empathy, human consideration, and a great deal of effort, the 
result will be a collection of scientists none of whom has a colleague. Finally, it 
should be noted that it is not easy to get funds for a large, interdisciplinary 
project. It is important to find a sponsoring agency that is willing to invest in 
long-term research, because continuity is critical. 

4.4. Knowledge engineering 

One major thrust of this work has been the exploration of methods for 
acquisition, representation, and use of knowledge. We have referred to the 
design of such methods as knowledge engineering, which is the basic engineer- 
ing aspect of the work. 

At the time of inception of the DENDRAL Project, the major emphasis of 
most AI research was a search for general methods of problem solving. 
Relatively little effort was devoted to the design of systems that embodied and 
used specialized knowledge. The paradigm case of the search for general 
methods was research on the resolution method of proving theorems in the 
predicate calculus [46] as applied to a variety of problems, for example robotics 
[45], by a number of computer scientists. There were other important elabora- 
tions of this theme, for example the General Problem Solver [15]. There were 
also some exceptions, projects in which emphasis was placed on exploiting 
specialized knowledge (e.g., [34]). Ch ess and checker programs are also good 
examples, as are symbolic mathematics aids such as MACSYMA [38]; such 
work, however, was in the minority. Mass spectrometry was not an area of 
strength for Buchanan and Sutherland. Thus the time-consuming and error- 
prone dialogue between Buchanan and Duffield forced development of styles 
and tools that are also now commonplace. 

The situation today is different. Many significant projects can best be 
characterized as the development and application of knowledge-based systems. 
The success and example of the DENDRAL project in all likelihood played an 
important role in the establishment of the new emphasis in AI, though it was 
not the only force acting in this direction. We now are more convinced than 
ever that the design of knowledge-based systems is an important emphasis. 
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We take it to be self-evident that problem solving in a specific task domain 
requires special knowledge of that task domain. This was not contested, merely 
not emphasized, in early AI work. In a predicate-calculus-based system, 
specialized knowledge was encoded in the axioms, the theorem-proving proce- 
dures, and the criteria of interest; it was not ignored. In the General Problem 
Solver, specialized knowledge was encoded into the definitions of the problem 
space and transformations; it was not ignored. What was not fully appreciated 
was the sheer amount and variety of such knowledge underlying intelligent 
behavior. General methods went awry when the unavoidable profusion of 
specialized knowledge swamped the heuristic methods and, further, outran the 
abilities of the programmers to encode it all. This breakdown happened as 
soon as attention was directed away from highly abstracted, simplified “toy” 
problems toward applications of utility outside AI itself. 

A surprisingly large amount of specialized knowledge is needed to achieve 
expertise in even a very circumscribed field. The fact that long periods of time 
are required to become an “expert” is evidence that expertise is knowledge- 
intensive. For example, Simon and Barenfeld [48] present evidence that the 
difference between expert and novice chess players lies almost exclusively in 
their differing degree of familiarity with commonly occurring patterns of chess 
pieces. This familiarity is reflected in speed of recognition and ability to recall, 
and is acquired by extended experience. It is estimated that the chess expert is 
familiar with between 10,000 and 100,000 such patterns, which is also the range 
of the word-recognition vocabulary of a fluent speaker. In addition to pattern 
familiarity there is a host of other knowledge that novice and expert alike must 
share, and that passes unnoticed in a casual analysis of game playing. This 
knowledge includes, for example, contextual information about the nature and 
purpose of games and of competition generally. In the case of mass spec- 
trometry, the knowledge base includes not only specialized knowledge of 
technique, but a large amount of information about the underlying subjects of 
chemistry and graph theory, any portion of which may profitably be brought to 
bear in the solution of a particular structure elucidation problem. A prerequi- 
site of successful performance by DENDRAL was the encoding of significant 
portions of this knowledge base, a job that has taken thousands of man-hours. 

To gain sufficient problem-solving power in the face of the needed quantity 
of knowledge, a knowledge representation scheme must be sufficiently special- 
ized; making it so is a major part of the engineering problem. Consequently, 
successful knowledge engineering initially requires decisions about knowledge 
representation; in particular, specialized representations for specialized appli- 
cations. A representation that is uniform for all tasks is doomed to impotence 
in problem-solving power, although we have argued previously that uniformity 
of representation has significant advantages, within a given task and for a given 
purpose. Thus the basic representation used by DENDRAL, chemical graphs, 
is, we have noted, the glue that holds the system together and permits various 
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qualities of knowledge to combine effectively. However, chemical graphs are 
manifestly not the appropriate knowledge representation for chess, or speech 
understanding, or quantum mechanics. Furthermore, even though it is conceiv- 
able, though unlikely, that some form of graph structure will suffice for 
encoding all knowledge (just as it is conceivable though unlikely that some 
linear logical calculus will suffice), it appears that the requirements of any given 
problem domain are so specialized that the appropriate form of graph will be in 
turn so specialized as to diminish seriously the importance of whatever insight 
such a commonality of language might hold. Therefore, knowledge representa- 
tion takes on a status equal to that of heuristic reasoning in the struggle against 
combinatorial complexity. 

To elaborate: the goal of knowledge engineering is to achieve a productive 
interaction of knowledge in the service of problem solving. An appropriate 
knowledge representation is an encoding that relates information that is 
naturally related in important ways in the referent application area. Further, it 
ought to do so in ways that ease the burden of inference [33, 341, just as 
class-subclass inheritance hierarchies can facilitate inference. To the extent 
that a measure of the inferential burden can be borne by the representation 
scheme, we have reduced the burden that must be borne by search and 
generation heuristics [35]. 

There has been a recent emphasis on “architectures” for general in- 
telligence, as illustrated by [41, 47, 541. These are attempts to incorporate 
knowledge representation, acquisition, and use into general problem-solving 
frameworks. In these systems, as in expert systems research, generality is 
sought by attempting to devise machines that apply general inferential mecha- 
nisms to the specialized knowledge that is acquired and represented. 

It is worth noting that none of these proposed architectures could, in any 
very obvious or direct way, learn to behave as the DENDRAL generator, 
which is the central feature of the DENDRAL programs. That particular 
special form of knowledge, an algorithm specifically designed to work on the 
class of chemical graphs, is indeed specialized knowledge, but it is not itself 
readily represented as productions, weighted connections, frames, scripts, 
semantic networks or any of the other non-procedural forms of knowledge 
representation that are the present currency of artificial intelligence [36]. 

4.4.1. How much does DENDRAL know? 
It is frequently asked how much any knowledge-based system such as 

DENDRAL “knows”. Unfortunately there is no straightforward answer to this 
question, for a variety of reasons. For example. it has frequently been pointed 
out that humans and, with qualifications, computers know in essence an infinite 
number of facts (to cite one instance, we know the successor of any integer); 
and yet our memories are finite. Also, any “piece” of knowledge is meaningful 
only in a larger context of its use with other knowledge. 
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Moreover, cognitive capacities can be represented in indefinitely many ways. 
For example, we may assert that DENDRAL knows that the valence of carbon 
is 4. Knowing this fact, however, presupposes that the concepts of valence, 
atom, and a constellation of related concepts are also in some sense under- 
stood. (Even so, DENDRAL’s concept of valence is clearly not the same as a 
chemist’s, which is embedded in an even richer context of related knowledge.) 
It is, furthermore, knowledge that is distributed throughout many subprograms 
that define and manipulate chemical graphs or in some way make use of facts 
such as “the valence of carbon is 4”. It would be nearly impossible to separate 
those pieces of DENDRAL computer code that in one way or another are 
associated with an understanding of valence from those that are not.’ 

In analyzing the issue of multiple representations of knowledge, the conven- 
tional distinction between “knowing how” and “knowing that”, though itself 
not precise, is a helpful starting point. Even when this division is possible, 
however, it must be remembered that there exist many different but functional- 
ly equivalent, and hence equally “knowledgeable”, programs that divide their 
knowledge in different ways between processes and facts. 

For these reasons and more, any list of what DENDRAL knows in terms of 
concepts, facts, and processes is of limited descriptive power. Nonetheless, we 
will attempt to classify the content of some of DENDRAL’s knowledge of 
chemistry in the list below. 

4.4.1.1. DENDRAL’s knowledge of chemical concepts and procedures 
DENDRAL’s knowledge base of facts and concepts was complete enough 

for many tasks, including the substantive one of generating all isomeric 
structures, but was admittedly incomplete. It was, however, intended to be 
extensible by using rules, lists, and tables, and values of LISP atoms or 
attributes. For example, only the half-dozen chemical atoms that most fre- 
quently occur in organic compounds were known, but any others could easily 
be added by editing one list of chemical atoms to be considered plus the 
property list of each new chemical atom. Some of the lists contained names of 
LISP functions to be used as special-purpose constraints (e.g., to see if a 
proposed structure violated the principle of stability known as Bredt’s rule), or 
as descriptions of processes that occur in mass spectroscopy (e.g., elimination 
of water). These were more complex procedures than made sense to decom- 
pose into productions, and that were treated as named primitives by chemists 
anyway. 

Perhaps it is obvious, but extensibility was considerably easier in the places 
where we only needed to edit lists and tables. When new LISP functions 

‘Some of the programs have been more meticulously written in this regard than others. For 
example, INTSUM always references the valence of chemical atoms through a single function. 
However. the more general concept of connectivity of graphs, which subsumes valence. is part of 
the whole framework assumed by almost all functions. 



254 R.K. Lindsay et al 

needed to be created to serve as functional primitives we attempted to 
generalize the functions so they could be used in other ways and to consolidate 
old functions with new ones to create reusable code. When completely new 
capabilities were considered, such as generating ringed structures, we often 
found we needed to rethink the design and implementation of large sections of 
code. 

This obvious principle evolved from the need to develop a computable 
theory of stability (BADLIST) interactively, and from the difficulties we 
encountered in changing code to overcome experts’ criticisms of the program’s 
performance. 

(1) Knowledge of chemical graphs: 
l Atom types (C, H, N, 0, P, S), along with essential properties of 

each atom: valence, atomic weight, isotopes, relative abundance of 
each isotope. 

l Bond types (single, double, triple, aromatic). 
. How to: 

-Generate all acyclic and/or cyclic isomers (including fused rings, 
Spiro forms, etc.). 

- Compute the degree of unsaturation (number of double bonds and 
rings) from an empirical formula. 

- Compute the mass of a collection of chemical atoms (empirical 
formula of a molecular fragment) at high or low resolution, plus 
masses and relative abundance of collections with isotopic contribu- 
tions. 

- Detect topological symmetry in graphs. 
- Generate all stereoisomers. 
-Find all cycles in a graph. 
- Define and name a new subgraph (with specialized editor). 
- Restrict generation of structures to those containing [GOODLIST] 

or not containing [BADLIST] named subgraphs. 
- Find all occurrences of arbitrarily complex subgraphs in a graph. 
- Find the greatest common subgraph among a set of graphs. 
- Label nodes and edges of a graph in all distinct ways, prospectively 

avoiding symmetric labelings. 
- Draw a chemical structure. 

(2) Knowledge of chemical stability: 
l Twenty classes of unstable families defined as acyclic subgraphs 

[named on BADLIST], others easily defined and added to BADLIST. 
l Three complex constraints: terpene rule, isoprene rule, Bredt’s rule. 
l How to: 

- Recognize keto-enol tautomerism (special form of isomerism) and 
other tautomers when specified. 
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(3) Knowledge of mass spectrometry: 
l Distinction between low-resolution and high-resolution spectra. 
l Distinction between low-voltage and high-voltage spectra. 
l How to: 

- Digitize an analog mass spectrum. 
- Find meta-stable peaks in a spectrum. 
- Interpret major features of a mass spectrum, using [about a half- 

dozen] rules that are specific fragmentation patterns for a specific 
family of compounds-rules already defined for alcohols, ethers, 
thiols, thioethers, amines, ketones, aromatic acids, estrogenic ster- 
oids, androstanes, marine sterols [roughly 50 rules in all are 
defined]. 

- Predict a “complete” spectrum in which every bond of a molecule 
breaks and every bond of every resulting fragment breaks (recur- 
sively), with isotopic contributions of atoms. 

- Constrain the prediction of a “complete” spectrum to plausible 
breaks, as specified in the half-order theory table [about a dozen 
named LISP functions in a table], assigning relative measures of 
significance or likelihood of various processes and assigning place- 
ment of charge to one or more resulting fragments from each 
process. 

- Augment the prediction of a mass spectrum with respect to [about 
l-31 rules that are general processes common to every family of 
compounds-rules already defined for hydrocarbon cleavage, 
McLafferty rearrangements, elimination of water, carbon monox- 
ide, carbon dioxide, or other user-defined “neutral species” [about 
a dozen rules defined]. 

(4) Knowledge of synthetic chemistry: 
l How to: 

- Define a new chemical reaction for the program to consider [about a 
dozen already defined with a specialized editor]. 

- Reason about plausible biosynthetic pathways from a known start- 
ing material in order to restrict a set of candidate structures to those 
that are plausible products of the starting material. 

There are many things that DENDRAL does not know, of course. Among 
missing items are knowledge of three-dimensional geometry beyond 
stereoisomerism, polymeric structures, quantum chemistry, and many prop- 
erties of atoms or structures such as electronegativity, dipole moments, mo- 
lecular susceptibility, melting points, and crystalline forms. 

In addition, all the knowledge of LISP is presupposed by the DENDRAL 
programs. For example, arithmetic and set-theoretic operations, symbol man- 
ipulation, interpretation of complex procedures, and countless bookkeeping 
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operations. Considerable amounts of code are devoted to keeping track of 
intermediate results in the overall processing. This “specialized bookkeeping” 
knowledge is not very profound, yet it is indispensable for the integration of 
many complex procedures. 

Almost all DENDRAL’s knowledge is tailored to the task of molecular 
structure elucidation. Although some pieces such as the representation and 
graph matcher have found wider applicability, the problem-solving procedures 
in DENDRAL are still very special-purpose, complex, and voluminous. 

4.5. Some observations about discovery in science 

We have collected several observations about the process of scientific 
discovery from this work that may be pertinent to a more systematic examina- 
tion of a theory of discovery. Since DENDRAL is, at least, an existence proof 
that the parts of science involving data interpretation and hypothesis formation 
can be automated, we believe many other problems of scientific interest can be 
automated along the same lines. Thus we suggest the following generalizations. 

(1) S t’ji d’ cten I c tscovery uses the same basic methods of problem solving as do 
other scientific reasoning tasks and other forms of problem solving. 

We note that Meta-DENDRAL is not much different in organization 
from Heuristic DENDRAL. Both are a species of plan-generate-test. 
Both are guided by a strong model of the domain. It was a surprisingly 
small step from Heuristic DENDRAL to a rule-discovery program, 
Meta-DENDRAL. No basic additions or reorganizations of the 
problem-solving method were required, even though in the latter case 
the results of problem solving are hypotheses (in the form of produc- 
tions) that embody a limited scientific theory (concerning the behavior of 
a class of compounds in the mass spectrometer). 

(2) Scientific discovery is judicious exclusion and selection from a space of 
possible hypotheses, as achieved through heuristic exploration. 

A cognitive agent has means for generating either the members of a 
set of possible hypotheses or the states of a problem space. This ability is 
productive in the sense that human language is productive (as stressed 
by linguist Noam Chomsky): a large set of novel combinations of a finite 
set of elements can be generated even though none has been previously 
encountered in the experience of the scientists. Possible hypotheses that 
are at odds with firmly believed data may be rejected. 

(3) In exploring the space of possible hypotheses, the scientist is strongly 
influenced by initial assumptions. 

Heuristic DENDRAL is a theory-driven mechanism: it finds only what 
it is looking for. For example, if it does not expect to find solutions 
(organic compounds) containing certain substructures, as signified by the 
presence of these substructures on BADLIST, then they are not gener- 
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ated. It is just such biases, (and the more the better), that allow the 
programs to discover a manageable set of candidates at all. 

(4) Scientific problem solving in general, and discovery in particular, outside 
the well-codified areas of science, involves the employment of a large 
number of vague and unverified ideas, rather than the application of 
logical deduction to previously verified propositions. 

It is clear that Heuristic DENDRAL does not have at its core a formal 
theory of chemical stability, but rather employs a large collection of 
weak partial assumptions each of limited range. We propose that this 
lack of formal theory is the rule in scientific discovery, in contrast to the 
classical description of scientific method as tight reasoning from estab- 
lished premises. Again, contemporary writers have expressed a similar 
opinion; what DENDRAL contributes is substantive detail in elabora- 
tion of this view. 

Note that this observation, and the following one, contrast with the 
view of scientific discovery in the BACON family of programs [26-281. 
In part this is due to DENDRAL’s assumption that any piece of 
empirical data may be flawed, thus no single strict test of agreement (or 
disagreement) with data will suffice to keep (or reject) an hypothesis. 
Instead one must rely on as many parts of a partial theory and as many 
data points as one has available, and then weigh all the evidence. 

(5) Scientific problem solving in general, and discovery in particular, is an 
interaction of top-down (expectation-driven) exploration, and bottom-up 
(data-driven) exploration. Both are necessary. 

Heuristic DENDRAL is driven largely in a top-down manner. How- 
ever, the data (spectra) are employed by MOLION and the PLANNER 
in planning and by the PREDICTOR to winnow the set of candidate 
solutions. 

(6) A generator that fails to guarantee completeness is not wholly satisfactory, 
since one then cannot say with certainty what hypotheses have been 
excluded from consideration. 

This observation, and the next one, differ from the model of discovery 
in Lenat’s AM and EURISKO programs. There, a generator of plaus- 
ible hypotheses (conjectures) is driven by a large number of plausible 
move generators, without any attempt to define the complete space of 
hypotheses. In domains where a complete generator cannot be defined, 
for whatever reason, a generator of plausible solutions may be worth 
trying if some (or any) solution will suffice as an answer. 

(7) A generator that cannot avoid duplicate (or equivalent) expressions of the 
same hypothesis is not wholly satisfactory, since the generation may never 
terminate. 

(8) Knowledge about classes of hypotheses is more effective than knowledge 
about individual hypotheses. 
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(9) A small set of plausible alternative hypotheses resulting from the genera- 
tion and testing may be as valuable as a single hypothesis. The upper 
bound on the acceptable size of the found set varies with problem 
complexity and with the ease of discriminating among the alternatives by 
other means. 

Aside from the plausibility of these generalizations that inheres in the 
existence of successful programs, no specific data support them. They suggest 
where we might look for support, of course, since we now have them as a 
source of expectations. There is anecdotal support in abundance. If the normal 
mode of processing empirical data is to verify expectations, as our theory has 
it, then science should appear essentially conservative, that is, exhibit few 
novel theoretical formulations. Kuhn [25] argues this point at length. 

Under our analysis the traditional problem of finding an effective method for 
discovering hypotheses that best explain phenomena has been transformed into 
finding heuristic methods that generate plausible explanations. The problem of 
giving rules for producing true scientific statements has been replaced by the 
problem of finding efficient heuristic rules for culling the reasonable candidates 
for an explanation from an appropriate set of possible candidates. 

4.6. Conclusion 

Although its utility to working chemists has been limited, DENDRAL is well 
known to computational chemists, who have incorporated many of the pieces 
of DENDRAL in their own software. As a single software package DEN- 
DRAL no longer runs; without an enthusiastic user community no one has 
invested time enough to maintain it. 

The major impact of DENDRAL has been on the AI community, where the 
program is well known and well enough understood to generate some half- 
truths as well as honest lessons. We take pride in knowing that the lessons 
learned from DENDRAL are now well entrenched in the AI literature and in 
the design and implementation of expert systems around the world. We hope 
this paper will correct some of the half-truths. 

Daniel Dennett [14] suggests that natural (or artificial) minds are viewed by 
various writers in three different ways. Mind as Crystal is the view that 
cognitive science should be modeled after physics: the principles of AI would 
be the wave equation and general relativity equation of the mind. Mind as 
Chaos is the counsel of despair: the mind, though it may be a mechanism, is so 
complex and ad hoc, and its course so sensitive to initial conditions that it is 
essentially without discoverable principles. The third view, the one to which 
our work subscribes, is Mind as Gadget, which sees AI as engineering, and its 
products as special-purpose artifacts constructed according to good design 
principles, with abilities constrained by specialized knowledge acquired 
through specialized experiences. This is engineering not in the sense of 
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efficiency and cost effectiveness alone, but in the sense of applying good 
engineering principles to particular tasks-at-hand. It is a view compatible with a 
world in which minds and brains evolved by an opportunistic, environmentally 
sensitive process of evolution, rather than springing full blown as the product 
of either a grand design or a mystical force. 

DENDRAL clearly is AI in the spirit of engineering gadget in Dennett’s 
non-pejorative sense; most recent AI systems are as well. While DENDRAL 
cannot play chess, bake a cake, or diagnose septicemia, it nonetheless em- 
bodies general strategies, augmented by specialized knowledge, that give it a 
measure of intelligence and which can adapt to new information. The general 
strategies, recombined with other knowledge, have been shown to do well at 
other tasks. This is the contemporary view of AI, a view that was advanced and 
illustrated by DENDRAL. It is perhaps the major legacy of this work. 
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